The synthesis of cone‐shaped Pt nanoparticles featuring compressively‐strained {111} facets by depositing Pt atoms on the vertices of Pd icosahedral nanocrystals, followed by selective removal of the Pd template via wet etching, is reported. By controlling the lateral dimensions down to ca. 3 nm, together with a thickness of ca. 2 nm, the Pt cones show greatly enhanced specific and mass activities toward oxygen reduction, with values being 2.8 and 6.4 times those of commercial Pt/C, respectively. Both the strain field and the observed activity trend are rationalized using density functional theory calculations. With the formation of ultrathin linkers among the Pt cones derived from the same Pd icosahedral seed, the interconnected Pt cones acquire stronger interactions with the carbon support, preventing them from detachment and aggregation during the catalytic reaction. Even after 20 000 cycles of accelerated durability test, the Pt cones still show a mass activity 5.3 times higher than the initial value of the Pt/C.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available November 1, 2025 -
Abstract Shape control has been a major theme of nanocrystal research in terms of synthesis, property tailoring, and optimization of performance in a variety of applications. Among the possible shapes, bipyramids are unique owing to their symmetry, planar defects, and exposed facets. In this article, we focus on the colloidal synthesis of noble‐metal nanocrystals featuring a triangular bipyramidal shape, together with highlights of their properties and applications. We start with a brief discussion of the general classification and requirements for the nucleation and growth of bipyramidal nanocrystals, followed by specific aspects regarding the synthetic methods with a focus on the roles of reduction, etching, and capping, as well as controls of facet, size, aspect ratio, and corner truncation. In the end, we illustrate how these aspects affect the properties of bipyramidal nanocrystals for plasmonic and catalytic applications, together with future perspectives.
Free, publicly-accessible full text available September 20, 2025 -
Abstract We report for the first time that Pd nanocrystals can absorb H via a “single‐phase pathway” when particles with a proper combination of shape and size are used. Specifically, when Pd icosahedral nanocrystals of 7‐ and 12‐nm in size are exposed to H atoms, the H‐saturated twin boundaries can divide each particle into 20 smaller single‐crystal units in which the formation of phase boundaries is no longer favored. As such, absorption of H atoms is dominated by the single‐phase pathway and one can readily obtain PdHxwith anyx in the range of 0–0.7. When switched to Pd octahedral nanocrystals, the single‐phase pathway is only observed for particles of 7 nm in size. We also establish that the H‐absorption kinetics will be accelerated if there is a tensile strain in the nanocrystals due to the increase in lattice spacing. Besides the unique H‐absorption behaviors, the PdHx(
x =0–0.7) icosahedral nanocrystals show remarkable thermal and catalytic stability toward the formic acid oxidation due tothe decrease in chemical potential for H atoms in a Pd lattice under tensile strain. -
Abstract This article describes a systematic study of the oxidative etching and regrowth behaviors of Pd nanocrystals, including single‐crystal cubes bounded by {100} facets, single‐crystal octahedra and tetrahedra enclosed by {111} facets; and multiple‐twinned icosahedra covered by {111} facets and twin boundaries. During etching, Pd atoms are preferentially oxidized and removed from the corners regardless of the type of nanocrystal, and the resultant Pd2+ions are then reduced back to elemental Pd. For cubes and icosahedra, the newly formed Pd atoms are deposited on the {100} facets and twin boundaries, respectively, due to their relatively higher energies. For octahedra and tetrahedra, the Pd atoms self‐nucleate in the solution phase, followed by their growth into small particles. We can control the regrowth rate relative to etching rate by varying the concentration of HCl in the reaction solution. As the concentration of HCl is increased, 18‐nm Pd cubes are transformed into octahedra of 23, 18, and 13 nm, respectively, in edge length. Due to the absence of regrowth, however, Pd octahedra are transformed into truncated octahedra, cuboctahedra, and spheres with decreasing sizes whereas Pd tetrahedra evolve into truncated tetrahedra and spheres. In contrast, Pd icosahedra with twin boundaries on the surface are converted to asymmetric icosahedra, flower‐like icosahedra, and spheres. This work not only advances the understanding of etching and growth behaviors of metal nanocrystals with various shapes and twin structures but also offers an alternative method for controlling their shape and size.
-
Abstract There is an urgent need to develop cost‐effective electrocatalysts based on Pt for a broad spectrum of applications, including those vital to the operation of fuel cells. Hollowing out the interior of Pt nanocrystals offers a simple and viable strategy for maximizing the utilization efficiency of this precious metal while enhancing the electrocatalytic performance. Herein, we report the synthesis and electrocatalytic evaluation of Pt−Ag icosahedral nanocages with an average wall thickness of 1.6 nm. The Pt atoms are coated on the surface of Ag icosahedral seeds, leading to the formation of Ag@PtnLcore‐shell icosahedral nanocrystals with tunable shell thicknesses. The core‐shell nanocrystals are then converted to icosahedral nanocages by selectively etching away the Ag in the core. The as‐obtained nanocages with a composition of Pt4.5Ag exhibit an almost 3‐fold enhancement in specific activity toward oxygen reduction relative to the commercial Pt/C in acid media.