skip to main content


Title: Radiogenic Power and Geoneutrino Luminosity of the Earth and Other Terrestrial Bodies Through Time
Abstract

We report the Earth's rate of radiogenic heat production and (anti)neutrino luminosity from geologically relevant short‐lived radionuclides (SLR) and long‐lived radionuclides (LLR) using decay constants from the geological community, updated nuclear physics parameters, and calculations of theβspectra. We track the time evolution of the radiogenic power and luminosity of the Earth over the last 4.57 billion years, assuming an absolute abundance for the refractory elements in the silicate Earth and key volatile/refractory element ratios (e.g., Fe/Al, K/U, and Rb/Sr) to set the abundance levels for the moderately volatile elements. The relevant decays for the present‐day heat production in the Earth (19.9 ± 3.0 TW) are from40K,87Rb,147Sm,232Th,235U, and238U. Given element concentrations in kg‐element/kg‐rock and densityρin kg/m3, a simplified equation to calculate the present‐day heat production in a rock isurn:x-wiley:ggge:media:ggge22244:ggge22244-math-0001

The radiogenic heating rate of Earth‐like material at solar system formation was some 103to 104times greater than present‐day values, largely due to decay of26Al in the silicate fraction, which was the dominant radiogenic heat source for the first10 Ma. Assuming instantaneous Earth formation, the upper bound on radiogenic energy supplied by the most powerful short‐lived radionuclide26Al (t1/2= 0.7 Ma) is 5.5×1031 J, which is comparable (within a factor of a few) to the planet's gravitational binding energy.

 
more » « less
Award ID(s):
1650365
NSF-PAR ID:
10359774
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
21
Issue:
7
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Potassium (K) informs on the radiogenic heat production, atmospheric composition, and volatile element depletion of the Earth and other planetary systems. Constraints on the abundance of K in the Earth, Moon, and other rocky bodies have historically hinged on K/U values measured in planetary materials, particularly comparisons of the continental crust and mid‐ocean ridge basalts (MORBs), for developing compositional models of the bulk silicate Earth (BSE). However, a consensus on the most representative K/U value for global MORB remains elusive despite numerous studies. Here, we statistically analyze a critical compilation of MORB data to determine the K/U value of the MORB source. Covariations in the log‐normal abundances of K and U establish that K is 3–7 times less incompatible than U during melting and/or crystallization processes, enabling inverse modeling to infer the K/U of the MORB source region. These comprehensive data have a mean K/U for global MORB = 13,900 ± 200 (2σm;n = 4,646), and define a MORB source region with a K/U between 14,000 and 15,500, depending on the modeled melting regime. However, this range represents strictly a lower limit due to the undefined role of fractional crystallization in these samples and challenges preserving the signatures of depleted components in the MORB mantle source. This MORB source model, when combined with recent metadata analyses of ocean island basalt (OIB) and continental crust, suggests that the BSE has a K/U value >12,100 and contains >260 × 10−6 kg/kg K, resulting in a global production of3.5 TW of radiogenic heat today and 1.5 × 1017 kg of40Ar over the lifetime of the planet.

     
    more » « less
  2. Abstract

    Debate continues on the amount and distribution of radioactive heat producing elements (i.e., U, Th, and K) in the Earth, with estimates for mantle heat production varying by an order of magnitude. Constraints on the bulk‐silicate Earth's (BSE) radiogenic power also places constraints on overall BSE composition. Geoneutrino detection is a direct measure of the Earth's decay rate of Th and U. The geoneutrino signal has contributions from the local (40%) and global (35%) continental lithosphere and the underlying inaccessible mantle (25%). Geophysical models are combined with geochemical data sets to predict the geoneutrino signal at current and future geoneutrino detectors. We propagated uncertainties, both chemical and physical, through Monte Carlo methods. Estimated total signal uncertainties are on the order of20%, proportionally with geophysical and geochemical inputs contributing30% and70%, respectively. We find that estimated signals, calculated using CRUST2.0, CRUST1.0, and LITHO1.0, are within physical uncertainty of each other, suggesting that the choice of underlying geophysical model will not change results significantly, but will shift the central value by up to15%. Similarly, we see no significant difference between calculated layer abundances and bulk crustal heat production when using these geophysical models. The bulk crustal heat production is calculated as 7  2 TW, which includes an increase of 1 TW in uncertainty relative to previous studies. Combination of our predicted lithospheric signal with measured signals yield an estimated BSE heat production of 21.5  10.4 TW. Future improvements, including uncertainty attribution and near‐field modeling, are discussed.

     
    more » « less
  3. Abstract

    We investigated competition betweenSalpa thompsoniand protistan grazers during Lagrangian experiments near the Subtropical Front in the southwest Pacific sector of the Southern Ocean. Over a month, the salp community shifted from dominance by large (> 100 mm) oozooids and small (< 20 mm) blastozooids to large (~ 60 mm) blastozooids. Phytoplankton biomass was consistently dominated by nano‐ and microphytoplankton (> 2 μm cells). Using bead‐calibrated flow‐cytometry light scatter to estimate phytoplankton size, we quantified size‐specific salp and protistan zooplankton grazing pressure. Salps were able to feed at a > 10,000 : 1 predator : prey size (linear‐dimension) ratio. Small blastozooids efficiently retained cells > 1.4μm (high end of picoplankton size, 0.6–2 μm cells) and also obtained substantial nutrition from smaller bacteria‐sized cells. Larger salps could only feed efficiently on > 5.9μm cells and were largely incapable of feeding on picoplankton. Due to the high biomass of nano‐ and microphytoplankton, however, all salps derived most of their (phytoplankton‐based) nutrition from these larger autotrophs. Phagotrophic protists were the dominant competitors for these prey items and consumed approximately 50% of the biomass of all phytoplankton size classes each day. Using a Bayesian statistical framework, we developed an allometric‐scaling equation for salp clearance rates as a function of salp and prey size:urn:x-wiley:00243590:media:lno11770:lno11770-math-0001where ESD is prey equivalent spherical diameter (µm), TL isS. thompsonitotal length,φ = 5.6 × 10−3 ± 3.6 × 10−4,ψ = 2.1 ± 0.13,θ = 0.58 ± 0.08, andγ = 0.46 ± 0.03 and clearance rate is L d‐1salp‐1. We discuss the biogeochemical and food‐web implications of competitive interactions among salps, krill, and protozoans.

     
    more » « less
  4. Abstract

    The distribution of the short‐lived radionuclide26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions inCO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearingCAIs in the Dominion Range (DOM) 08006 (CO3.0) andDOM08004 (CO3.1) chondrites. All minerals inDOM08006CAIs as well as hibonite, spinel, and pyroxene inDOM08004 are uniformly16O‐rich (Δ17O = −25 to −20‰) but grossite and melilite inDOM08004CAIs are not; Δ17O of grossite and melilite range from ~ −11 to ~0‰ and from ~ −23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial26Al/27Al ratios (26Al/27Al)0is seen, with four having (26Al/27Al)0≤1.1 × 10−5and six having (26Al/27Al)0≥3.7 × 10−5. Five of the26Al‐richCAIs have (26Al/27Al)0within error of 4.5 × 10−5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10−5given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the26Al‐poorCAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in theDOM08006CAIs, as well as spinel, hibonite, and Al‐diopside in theDOM08004CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where theCOgrossite‐bearingCAIs originated. Oxygen isotopic heterogeneity inCAIs fromDOM08004 resulted from exchange between the initially16O‐rich (Δ17O ~−24‰) melilite and grossite and16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on theCOchondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on theCOparent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected mostCAIs in CO ≥3.1 chondrites.

     
    more » « less
  5. Abstract

    The concentration of carbon in primary mid‐ocean ridge basalts (MORBs), and the associated fluxes of CO2outgassed at ocean ridges, is examined through new data obtained by secondary ion mass spectrometry (SIMS) on 753 globally distributed MORB glasses. MORB glasses are typically 80–90% degassed of CO2. We thus use the limited range in CO2/Ba (81.3 ± 23) and CO2/Rb (991 ± 129), derived from undegassed MORB and MORB melt inclusions, to estimate primary CO2concentrations for ridges that have Ba and/or Rb data. When combined with quality‐controlled volatile‐element data from the literature (n = 2,446), these data constrain a range of primary CO2abundances that vary from 104 ppm to 1.90 wt%. Segment‐scale data reveal a range in MORB magma flux varying by a factor of 440 (from 6.8 × 105to 3.0 × 108m3/year) and an integrated global MORB magma flux of 16.5 ± 1.6 km3/year. When combined with CO2/Ba and CO2/Rb‐derived primary magma CO2abundances, the calculated segment‐scale CO2fluxes vary by more than 3 orders of magnitude (3.3 × 107to 4.0 × 1010mol/year) and sum to an integrated global MORB CO2flux of × 1012mol/year. Variations in ridge CO2fluxes have a muted effect on global climate; however, because the vast majority of CO2degassed at ridges is dissolved into seawater and enters the marine bicarbonate cycle. MORB degassing would thus only contribute to long‐term variations in climate via degassing directly into the atmosphere in shallow‐water areas or where the ridge system is exposed above sea level.

     
    more » « less