ABSTRACT A major earthquake ruptured the Cascadia subduction zone (CSZ) on 26 January 1700. Key paleoseismic evidence associated with this event include tsunami deposits, stratigraphic evidence of coastal coseismic subsidence, written Japanese records of a tsunami unaccompanied by earthquake shaking, and margin-wide turbidites found offshore and in lacustrine environments. Despite this wealth of independent clues, important details about this event remain unresolved. Dating uncertainties do not conclusively establish whether the proxies are from one earthquake or a sequence of them, and we have limited knowledge of the likely slip distributions of the event or events. Here, we use a catalog of 37,500 candidate synthetic ruptures between Mw 7.8 and 9.2 and simulate their resulting coseismic deformation and tsunami inundation. Each model is then compared against estimated Japan tsunami arrivals, regional coastal subsidence records, and local paleotsunami deposits mapped at six different coastal marshes and one coastal lake along the CSZ. We find that seven full-margin ruptures with a median magnitude of Mw 9.1 satisfy all three constraints. We favor one Mw 9.11 model that best matches all site paleoseismic observations and suggests that the Cascadia megathrust slipped up to ∼30 m and must have shallow geodetic coupling. We also find that some sequences composed of three or four ruptures can still satisfy the observations, yet no sequences of two ruptures can. Sequences are differentiated into three groups based on whether they contain a mainshock rupture located in the south (>44° N) or further north. All sequences contain unruptured portions of the megathrust and most contain mainshocks with peak slip above 40 m. The fit of the geologic evidence from sequences is poor in comparison to single-event models. Therefore, sequences are generally less favored compared to full-margin events.
more »
« less
Relationships Among Forearc Structure, Fault Slip, and Earthquake Magnitude: Numerical Simulations With Applications to the Central Chilean Margin
Abstract Two adjacent segments of the Chile margin exhibit significant differences in earthquake magnitude and rupture extents during the 1960 Valdivia and 2010 Maule earthquakes. We use the discrete element method (DEM) to simulate the upper plate as having an inner and outer wedge defined by different frictional domains along the décollement. We find that outer wedge width strongly influences coseismic slip distributions. We use the published peak slip magnitudes to pick best fit slip distributions and compare our models to geophysical constraints on outer wedge widths for the margins. We obtain reasonable fits to published slip distributions for the 2010 Maule rupture. Our best‐fit slip distribution for the 1960 Valdivia earthquake suggests that peak slip occurred close to the trench, differing from published models but being supported by new seismic interpretations along this margin. Finally, we also demonstrate that frictional conditions beneath the outer wedge can affect the coseismic slip distributions.
more »
« less
- Award ID(s):
- 1723249
- PAR ID:
- 10359900
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 48
- Issue:
- 13
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Finite-fault models for the 2010 M w 8.8 Maule, Chile earthquake indicate bilateral rupture with large-slip patches located north and south of the epicenter. Previous studies also show that this event features significant slip in the shallow part of the megathrust, which is revealed through correction of the forward tsunami modeling scheme used in tsunami inversions. The presence of shallow slip is consistent with the coseismic seafloor deformation measured off the Maule region adjacent to the trench and confirms that tsunami observations are particularly important for constraining far-offshore slip. Here, we benchmark the method of Optimal Time Alignment (OTA) of the tsunami waveforms in the joint inversion of tsunami (DART and tide-gauges) and geodetic (GPS, InSAR, land-leveling) observations for this event. We test the application of OTA to the tsunami Green’s functions used in a previous inversion. Through a suite of synthetic tests we show that if the bias in the forward model is comprised only of delays in the tsunami signals, the OTA can correct them precisely, independently of the sensors (DART or coastal tide-gauges) and, to the first-order, of the bathymetric model used. The same suite of experiments is repeated for the real case of the 2010 Maule earthquake where, despite the results of the synthetic tests, DARTs are shown to outperform tide-gauges. This gives an indication of the relative weights to be assigned when jointly inverting the two types of data. Moreover, we show that using OTA is preferable to subjectively correcting possible time mismatch of the tsunami waveforms. The results for the source model of the Maule earthquake show that using just the first-order modeling correction introduced by OTA confirms the bilateral rupture pattern around the epicenter, and, most importantly, shifts the inferred northern patch of slip to a shallower position consistent with the slip models obtained by applying more complex physics-based corrections to the tsunami waveforms. This is confirmed by a slip model refined by inverting geodetic and tsunami data complemented with a denser distribution of GPS data nearby the source area. The models obtained with the OTA method are finally benchmarked against the observed seafloor deformation off the Maule region. We find that all of the models using the OTA well predict this offshore coseismic deformation, thus overall, this benchmarking of the OTA method can be considered successful.more » « less
-
A major earthquake ruptured the Cascadia subduction zone (CSZ) on 26 January 1700. Key paleoseismic evidence associated with this event include tsunami deposits, stratigraphic evidence of coastal coseismic subsidence, written Japanese records of a tsunami unaccompanied by earthquake shaking, and margin‐wide turbidites found offshore and in lacustrine environments. Despite this wealth of independent clues, important details about this event remain unresolved. Dating uncertainties do not conclusively establish whether the proxies are from one earthquake or a sequence of them, and we have limited knowledge of the likely slip distributions of the event or events. Here, we use a catalog of 37,500 candidate synthetic ruptures between 7.8 and 9.2 and simulate their resulting coseismic deformation and tsunami inundation. Each model is then compared against estimated Japan tsunami arrivals, regional coastal subsidence records, and local paleotsunami deposits mapped at six different coastal marshes and one coastal lake along the CSZ. We find that seven full‐margin ruptures with a median magnitude of 9.1 satisfy all three constraints. We favor one 9.11 model that best matches all site paleoseismic observations and suggests that the Cascadia megathrust slipped up to ∼30 m and must have shallow geodetic coupling. We also find that some sequences composed of three or four ruptures can still satisfy the observations, yet no sequences of two ruptures can. Sequences are differentiated into three groups based on whether they contain a mainshock rupture located in the south (>44° N) or further north. All sequences contain unruptured portions of the megathrust and most contain mainshocks with peak slip above 40 m. The fit of the geologic evidence from sequences is poor in comparison to single‐event models. Therefore, sequences are generally less favored compared to full‐margin events.more » « less
-
Abstract The Shumagin seismic gap along the Alaska Peninsula experienced a major,MW7.8, interplate thrust earthquake on 22 July 2020. Several available finite‐fault inversions indicate patchy slip of up to 4 m at 8–48 km depth. There are differences among the models in peak slip and absolute placement of slip on the plate boundary, resulting from differences in data distributions, model parameterizations, and inversion algorithms. Two representative slip models obtained from inversions of large seismic and geodetic data sets produce very different tsunami predictions at tide gauges and deep‐water pressure sensors (DART stations), despite having only secondary differences in slip distribution. This is found to be the result of the acute sensitivity of the tsunami excitation for rupture below the continental shelf in proximity to an abrupt shelf break. Iteratively perturbing seismic and geodetic inversions by constraining fault model extent along dip and strike, we obtain an optimal rupture model compatible with teleseismicPandSHwaves, regional three‐component broadband and strong‐motion seismic recordings, hr‐GNSS time series and static offsets, as well as tsunami recordings at DART stations and regional and remote tide gauges. Slip is tightly bounded between 25 and 40 km depth, the up‐dip limit of slip in the earthquake is resolved to be well‐inland of the shelf break, and the rupture extent along strike is well‐constrained. The coseismic slip increased Coulomb stress on the shallow plate boundary extending to the trench, but the frictional behavior of the megathrust below the continental slope remains uncertain.more » « less
-
Abstract Most great earthquakes on subduction zone plate boundaries have large coseismic slip concentrated along the contact between the subducting slab and the upper plate crust. On 4 March 2021, a magnitude 7.4 foreshock struck 1 hr 47 min before a magnitude 8.1 earthquake along the northern Kermadec island arc. The mainshock is the largest well‐documented underthrusting event along the ∼2,500‐km long Tonga‐Kermadec subduction zone. Using teleseismic, geodetic, and tsunami data, we find that all substantial coseismic slip in the mainshock is located along the mantle/slab interface at depths from 20 to 55 km, with the large foreshock nucleating near the down‐dip edge. Smaller foreshocks and most aftershocks are located up‐dip of the mainshock, where substantial prior moderate thrust earthquake activity had occurred. The upper plate crust is ∼17 km thick in northern Kermadec with only moderate‐size events along the crust/slab interface. A 1976 sequence withMWvalues of 7.9, 7.8, 7.3, 7.0, and 7.0 that spanned the 2021 rupture zone also involved deep megathrust rupture along the mantle/slab contact, but distinct waveforms exclude repeating ruptures. Variable waveforms for eight deep M6.9+ thrusting earthquakes since 1990 suggest discrete slip patches distributed throughout the region. The ∼300‐km long plate boundary in northern Kermadec is the only documented subduction zone region where the largest modeled interplate earthquakes have ruptured along the mantle/slab interface, suggesting that local frictional properties of the putatively hydrated mantle wedge may involve a dense distribution of Antigorite‐rich patches with high slip rate velocity weakening behavior in this locale.more » « less
An official website of the United States government
