Two‐dimensional (2D) transition metal dichalcogenides (TMDCs) such as MoS2exhibit exceptionally strong nonlinear optical responses, while nanoscale control of the amplitude, polar orientation, and phase of the nonlinear light in TMDCs remains challenging. In this work, by interfacing monolayer MoS2with epitaxial PbZr0.2Ti0.8O3(PZT) thin films and free‐standing PZT membranes, the amplitude and polarization of the second harmonic generation (SHG) signal are modulated via ferroelectric domain patterning, which demonstrates that PZT membranes can lead to in‐operando programming of nonlinear light polarization. The interfacial coupling of the MoS2polar axis with either the out‐of‐plane polar domains of PZT or the in‐plane polarization of domain walls tailors the SHG light polarization into different patterns with distinct symmetries, which are modeled via nonlinear electromagnetic theory. This study provides a new material platform that enables reconfigurable design of light polarization at the nanoscale, paving the path for developing novel optical information processing, smart light modulators, and integrated photonic circuits.
Ferroelectric (FE) devices are conventionally switched by an application of an electric field. However, the recent discoveries of light–matter interactions in heterostructures based on 2D semiconductors and FE materials open new opportunities for using light as an additional tool for device programming. Recently, a purely optical switching of FE polarization in heterostructures comprising 2D MoS2and FE oxide perovskites, such as BaTiO3and Pb(Zr,Ti)O3(PZT), was demonstrated. In this work, it is investigated whether this optical switching has a practical value and can be used to improve functional characteristics of MoS2‐PZT FE field‐effect transistors for nonvolatile memory applications. It is demonstrated that the combined use of an electrical field and visible light improves the nonvolatile ON/OFF ratios in MoS2‐PZT memories by several orders of magnitude compared to their purely electrical operation. The memories are read at zero gate voltage (
- PAR ID:
- 10359977
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Electronic Materials
- Volume:
- 7
- Issue:
- 5
- ISSN:
- 2199-160X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The capacity to manipulate magnetization in 2D dilute magnetic semiconductors (2D‐DMSs) using light, specifically in magnetically doped transition metal dichalcogenide (TMD) monolayers (
M ‐dopedTX 2, whereM = V, Fe, and Cr;T = W, Mo;X = S, Se, and Te), may lead to innovative applications in spintronics, spin‐caloritronics, valleytronics, and quantum computation. This Perspective paper explores the mediation of magnetization by light under ambient conditions in 2D‐TMD DMSs and heterostructures. By combining magneto‐LC resonance (MLCR) experiments with density functional theory (DFT) calculations, we show that the magnetization can be enhanced using light in V‐doped TMD monolayers (e.g., V‐WS2, V‐WSe2). This phenomenon is attributed to excess holes in the conduction and valence bands, and carriers trapped in magnetic doping states, mediating the magnetization of the semiconducting layer. In 2D‐TMD heterostructures (VSe2/WS2, VSe2/MoS2), the significance of proximity, charge‐transfer, and confinement effects in amplifying light‐mediated magnetism is demonstrated. We attributed this to photon absorption at the TMD layer that generates electron–hole pairs mediating the magnetization of the heterostructure. These findings will encourage further research in the field of 2D magnetism and establish a novel design of 2D‐TMDs and heterostructures with optically tunable magnetic functionalities, paving the way for next‐generation magneto‐optic nanodevices. -
Ferroelectric field‐effect transistors (FeFETs) employing graphene on inorganic perovskite substrates receive considerable attention due to their interesting electronic and memory properties. They are known to exhibit an unusual hysteresis of electronic transport that is not consistent with the ferroelectric polarization hysteresis and is previously shown to be associated with charge trapping at graphene–ferroelectric interface. Here, an electrical measurement scheme that minimizes the effect of charge traps and reveals the polarization‐dependent hysteresis of electronic transport in graphene–Pb(Zr,Ti)O3FeFETs is demonstrated. Observation of the polarization‐dependent conductivity hysteresis is important for the fundamental understanding of the interplay between the ferroelectric polarization and charge carriers in graphene. It is also important for practical memory applications because this hysteresis emulates the operation of nonvolatile memories and reveals the range of ON and OFF currents that can be achieved in long term data storage. It is demonstrated that this measurement scheme can be used to optimize the memory performance of graphene–PZT FeFETs that can exhibit nonvolatile time‐independent ON/OFF ratios of over 5. The described measurement technique can potentially be used in the studies of kinetics of charge trap dissipation, polarization‐dependent properties, and memory performance of FeFET devices comprising other 2D materials and various ferroelectric substrates.
-
Abstract The minimization of the subthreshold swing (SS) in transistors is essential for low‐voltage operation and lower power consumption, both critical for mobile devices and internet of things (IoT) devices. The conventional metal‐oxide‐semiconductor field‐effect transistor requires sophisticated dielectric engineering to achieve nearly ideal SS (60 mV dec−1at room temperature). However, another type of transistor, the junction field‐effect transistor (JFET) is free of dielectric layer and can reach the theoretical SS limit without complicated dielectric engineering. The construction of a 2D SnSe/MoS2van der Waals (vdW) heterostructure‐based JFET with nearly ideal SS is reported. It is shown that the SnSe/MoS2vdW heterostructure exhibits excellent p–n diode rectifying characteristics with low saturate current. Using the SnSe as the gate and MoS2as the channel, the SnSe/MoS2vdW heterostructure exhibit well‐behavioured n‐channel JFET characteristics with a small pinch‐off voltage
V Pof −0.25 V, nearly ideal subthreshold swing SS of 60.3 mV dec−1and high ON/OFF ratio over 106, demonstrating excellent electronic performance especially in the subthreshold regime. -
Abstract 2D memristors have demonstrated attractive resistive switching characteristics recently but also suffer from the reliability issue, which limits practical applications. Previous efforts on 2D memristors have primarily focused on exploring new material systems, while damage from the metallization step remains a practical concern for the reliability of 2D memristors. Here, the impact of metallization conditions and the thickness of MoS2films on the reliability and other device metrics of MoS2‐based memristors is carefully studied. The statistical electrical measurements show that the reliability can be improved to 92% for yield and improved by ≈16× for average DC cycling endurance in the devices by reducing the top electrode (TE) deposition rate and increasing the thickness of MoS2films. Intriguing convergence of switching voltages and resistance ratio is revealed by the statistical analysis of experimental switching cycles. An “effective switching layer” model compatible with both monolayer and few‐layer MoS2, is proposed to understand the reliability improvement related to the optimization of fabrication configuration and the convergence of switching metrics. The Monte Carlo simulations help illustrate the underlying physics of endurance failure associated with cluster formation and provide additional insight into endurance improvement with device fabrication optimization.