The impacts of inland flooding caused by tropical cyclones (TCs), including loss of life, infrastructure disruption, and alteration of natural landscapes, have increased over recent decades. While these impacts are well documented, changes in TC precipitation extremes—the proximate cause of such inland flooding—have been more difficult to detect. Here, we present a latewood tree-ring–based record of seasonal (June 1 through October 15) TC precipitation sums (ΣTCP) from the region in North America that receives the most ΣTCP: coastal North and South Carolina. Our 319-y-long ΣTCP reconstruction reveals that ΣTCP extremes (≥0.95 quantile) have increased by 2 to 4 mm/decade since 1700 CE, with most of the increase occurring in the last 60 y. Consistent with the hypothesis that TCs are moving slower under anthropogenic climate change, we show that seasonal ΣTCP along the US East Coast are positively related to seasonal average TC duration and TC translation speed.
Studies have quantified the contribution of tropical cyclones (TCs) toward seasonal precipitation, but limited analysis is available on TC contribution toward seasonal streamflow over the southeastern and southcentral (SESC) United States (U.S.). Using an extensive network of hydroclimatic data that consists of 233 TC tracks and daily precipitation and streamflow, we estimate TC contribution toward precipitation and streamflow during the hurricane season over the SESC U.S. We found that TCs account for 12% of seasonal streamflow and 6% of seasonal precipitation over the region. Florida, North Carolina, and Louisiana have the highest fractional occurrence of TC‐generated annual maximum precipitation (∼20%–32%) and streamflow (∼15%–27%). We also found the fractional occurrence of TCs associated with peak‐over threshold precipitation (streamflow) events ranges from 5% to 8% in coastal regions (10%–20% over FL and 5%–10% over coastal NC). Increased antecedent moisture results in increased TCs contribution to streamflow leading to different land‐surface responses for similar hurricane events.
more » « less- Award ID(s):
- 1805293
- PAR ID:
- 10360031
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 48
- Issue:
- 15
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The western North-Atlantic coast experienced major coastal floods in recent years. Coastal floods are primarily composed of tides and storm surges due to tropical (TCs) and extra-tropical cyclones (ETCs). We present a reanalysis from 1988 to 2015 of extreme sea levels that explicitly include TCs for the western North-Atlantic coastline. Validation shows a good agreement between modeled and observed sea levels and demonstrates that the framework can capture large-scale variability in extreme sea levels. We apply the 28-year reanalysis to analyze spatiotemporal patterns. Along the US Atlantic coasts the contribution of tides can be significant, with the average contribution of tides during the 10 largest events up to 55% in some locations, whereas along the Mexican Southern Gulf coast, the average contribution of tides over the largest 10 events is generally below 25%. At the US Atlantic coast, ETCs are responsible for 8.5 out of the 10 largest extreme events, whereas at the Gulf Coast and Caribbean TCs dominate. During the TC season more TC-driven events exceed a 10-year return period. During winter, there is a peak in ETC-driven events. Future research directions include coupling the framework with synthetic tropical cyclone tracks and extension to the global scale.
-
Abstract Tropical cyclones (TCs) generate extreme precipitation with severe impacts across large coastal and inland areas, calling for accurate frequency estimation methods. Statistical approaches that take into account the physical mechanisms responsible for these extremes can help reduce the estimation uncertainty. Here we formulate a mixed‐population Metastatistical Extreme Value Distribution explicitly incorporating non‐TC and TC‐induced rainfall and evaluate its implications on long series of daily rainfall for six major U.S. urban areas impacted by these storms. We find statistically significant differences between the distributions of TC‐ and non‐TC‐related precipitation; moreover, including mixtures of distributions improves the estimation of the probability of extreme precipitation where TCs occur more frequently. These improvements are greater when rainfall aggregated over durations longer than one day are considered.
-
Abstract Estimating the magnitude of tropical cyclone (TC) rainfall at different landfalling stages is an important aspect of the TC forecast that directly affects the level of response from emergency managers. In this study, a climatology of the TC rainfall magnitude as a function of the location of the TC centers within distance intervals from the coast and the percentage of the raining area over the land is presented on a global scale. A total of 1834 TCs in the period from 2000 until 2019 are analyzed using satellite information to characterize the precipitation magnitude, volumetric rain, rainfall area, and axial-symmetric properties within the proposed landfalling categories, with an emphasis on the postlandfall stages. We found that TCs experience rainfall maxima in regions adjacent to the coast when more than 50% of their rainfall area is over the water. TC rainfall is also analyzed over the entire TC extent and the portion over land. When the total extent is considered, rainfall intensity, volumetric rain, and rainfall area increase with wind speed intensity. However, once it is quantified over the land only, we found that rainfall intensity exhibits a nearly perfect inversely proportional relation with the increase in TC rainfall area. In addition, when a TC with life maximum intensity of a major hurricane makes landfall as a tropical depression or tropical storm, it usually produces the largest spatial extent and the highest volumetric rain.
Significant Statement This study aims to describe the cycle of tropical cyclone (TC) precipitation magnitude through a new approach that defines the landfall categories as a function of the percentage of the TC precipitating area over the land and ocean, along with the location of the TC centers within distance intervals from the coast. Our central hypothesis is that TC rainfall should exhibit distinct features in the long-term satellite time series for each of the proposed stages. We particularly focused on the overland events due to their effects on human activities, finding that the TCs that at some point of their life cycle reached major hurricane strength and made landfall as a tropical storm or tropical depression produced the highest volumetric rain over the land surface. This research also presents key observational evidence of the relationship between the rain rate, raining area, and volumetric rain for landfalling TCs.
-
Abstract The eastern North Pacific (ENP) has the highest density of tropical cyclones (TCs) on earth, and yet the controls on TCs, from individual events to seasonal totals, remain poorly understood. One effect that has not been fully considered is the unique geography of the Central American mountains. Although observational studies suggest these mountains can readily fuel individual TCs through dynamical processes, here we show that these mountains indeed play the opposite role on the seasonal timescale, hindering seasonal ENP TC activity by up to 35%. We found that these mountains significantly interrupt the abundant moisture transport from the Caribbean Sea to the ENP, limiting deep convection over the open ocean area where TCs preferentially occur. This study advances our fundamental understanding of ENP TC genesis mechanisms across the weather-to-climate timescales, and also highlights the importance of topography representation in improving the ENP regional climate simulations, as well as TC seasonal predictions and future projections.