The recent developments in array-based surface-wave tomography have made it possible to directly measure apparent phase velocities through wave front tracking. While directionally dependent measurements have been used to infer intrinsic $2\psi $ azimuthal anisotropy (with a 180° periodicity), a few studies have also demonstrated strong but spurious $1\psi $ azimuthal anisotropy (360° periodicity) near major structure boundaries particularly for long period surface waves. In such observations, Rayleigh waves propagating in the direction perpendicular to the boundary from the slow to the fast side persistently show a higher apparent velocity compared to waves propagating in the opposite direction. In this study, we conduct numerical and theoretical investigations to explore the effect of scattering on the apparent Rayleigh-wave phase velocity measurement. Using 2-D spectral-element numerical wavefield simulations, we first reproduce the observation that waves propagating in opposite directions show different apparent phase velocities when passing through a major velocity contrast. Based on mode coupling theory and the locked mode approximation, we then investigate the effect of the scattered fundamental-mode Rayleigh wave and body waves interfering with the incident Rayleigh wave separately. We show that scattered fundamental-mode Rayleigh waves, while dominating the scattered wavefield, mostly cause short wavelength apparent phase velocity variations that could only be studied if the station spacing is less than about one tenth of the surface wave wavelength. Scattered body waves, on the other hand, cause longer wavelength velocity variations that correspond to the existing real data observations. Because of the sensitivity of the $1\psi $ apparent anisotropy to velocity contrasts, incorporating such measurements in surface wave tomography could improve the resolution and sharpen the structural boundaries of the inverted model.
Azimuthally asymmetric perturbations are important to hurricanes because they can influence the track, structure, and intensity of a hurricane. In this work, we applied space‐time spectral analysis on both dynamic and thermodynamic fields of these perturbations and found two distinct power peaks in most of the fields. We obtained the structure of each mode by first filtering the fields through a frequency‐wavenumber spectral window selected for each mode and then regressing these fields on an index based on the filtered radar reflectivity. We found that the fast‐propagating wave is dominated by perturbations near the eyewall, and its structure is similar to that of the unstable mixed vortex Rossby inertia gravity wave. The other peak corresponds to a slow‐propagating wave that has comparable perturbations in and beyond the eyewall. The slow wave has a retrograde intrinsic propagating speed and has a vertical structure that resembles that of convectively coupled waves.
more » « less- Award ID(s):
- 1649819
- PAR ID:
- 10360128
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 46
- Issue:
- 13
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- p. 7769-7779
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
SUMMARY -
Abstract The ERA5 reanalysis with hourly time steps and ∼30 km horizontal resolution resolves a substantially larger fraction of the gravity wave spectrum than its predecessors. Based on a representation of the two-sided zonal wavenumber–frequency spectrum, we show evidence of gravity wave signatures in a suite of atmospheric fields. Cross-spectrum analysis reveals (i) a substantial upward flux of geopotential for both eastward- and westward-propagating waves, (ii) an upward flux of westerly momentum in eastward-propagating waves and easterly momentum in westward-propagating waves, and (iii) anticyclonic rotation of the wind vector with time—all characteristics of vertically propagating gravity and inertio-gravity waves. Two-sided meridional wavenumber–frequency spectra, which are computed along individual meridians and then zonally averaged, exhibit characteristics similar to the spectra computed on latitude circles, indicating that these waves propagate in all directions. The three-dimensional structure of these waves is also documented in composites of the temperature field relative to grid-resolved, wave-induced downwelling events at individual reference grid points along the equator. It is shown that the waves radiate outward and upward relative to the respective reference grid points, and their amplitude decreases rapidly with time. Within the broad continuum of gravity wave phase speeds there are preferred values around ±49 and ±23 m s−1, the former associated with the first baroclinic mode in which the vertical velocity perturbations are of the same sign throughout the depth of the troposphere, and the latter with the second mode in which they are of opposing polarity in the lower and upper troposphere.
-
Abstract Radio emission from interplanetary shocks, planetary foreshocks, and some solar flares occurs in the so-called “plasma emission” framework. The generally accepted scenario begins with electrostatic Langmuir waves that are driven by a suprathermal electron beam on the Landau resonance. These Langmuir waves then mode-convert to freely propagating electromagnetic emissions at the local plasma frequency f pe and/or its harmonic 2 f pe . However, the details of the physics of mode conversion are unclear, and so far the magnetic component of the plasma waves has not been definitively measured. Several spacecraft have measured quasi-monochromatic Langmuir or slow extraordinary modes (sometimes called z -modes) in the solar wind. These coherent waves are expected to have a weak magnetic component, which has never been observed in an unambiguous way. Here we report on the direct measurement of the magnetic signature of these waves using the Search Coil Magnetometer sensor of the Parker Solar Probe/FIELDS instrument. Using simulations of wave propagation in an inhomogeneous plasma, we show that the appearance of the magnetic component of the slow extraordinary mode is highly influenced by the presence of density inhomogeneities that occasionally cause the refractive index to drop to low values where the wave has strong electromagnetic properties.more » « less
-
Abstract Polygonal eyewall asymmetries of Hurricane Michael (2018) during rapid intensification (RI) are analyzed from ground‐based single Doppler radar. Here, we present the first observational evidence of the evolving wind field of a polygonal eyewall during RI to Category 5 intensity by deducing the axisymmetric and asymmetric winds at 5‐min intervals. Spectral time decomposition of the retrieved tangential wind structure shows quantitative evidence of low (1–4) azimuthal wavenumbers with propagation speeds that are consistent with linear wave theory on a radial vorticity gradient, suggesting the presence of rapidly evolving vortex Rossby waves. Dual‐Doppler winds from the NOAA P‐3 Hurricane Hunter airborne radar provide further evidence of the three‐dimensional vortex structure that supports growth of asymmetries during RI. Both reflectivity and tangential wind fields show polygonal structure and propagate at similar speeds, suggesting a close coupling of the dynamics and the convective organization during the intensification.
-
Abstract We studied the spatiotemporal structure of ground magnetic pulsations on the dayside by displaying magnetic field perturbations detected by the European quasi‐Meridional Magnetometer Array (EMMA) as 2‐D images in the magnetic
L value versus time space, called EMMAgrams. We generated EMMAgrams from observations made on 15 August 2015, including a previously studied pulsation event associated with an interplanetary shock. In addition to signatures of field line resonance driven by a cavity mode oscillation, we found poleward propagating structures withL ‐independent periods in the Pc2 band. The Pc2 structures are attributed to periodic magnetohydrodynamic pulses (upstream waves) originating from the ion foreshock and propagating in the magnetosphere along the path proposed by Tamao. Ringing of local field lines atL ‐dependent periods (transient pulsations) is also clearly detected as dispersive poleward propagating structures not only immediately after the shock impact but also during time periods of less obvious external disturbances. A transient pulsation decays after a few wave periods, and cross‐spectral analysis of transient pulsations detected at two stations with a small latitudinal separation indicates elevation of the cross phase in a band delimited by the field line resonance frequencies at the stations. Successive excitation of transient pulsations by variations of the solar wind dynamic pressure appears to contribute significantly to formation of similar cross‐phase peaks that are widely used in magnetoseismic studies.