skip to main content

Title: An Eddy‐Resolving Numerical Model to Study Turbulent Flow, Sediment, and Bed Evolution Using Detached Eddy Simulation in a Lateral Separation Zone at the Field‐Scale

Turbulence‐resolving simulations elucidate key elements of fluid dynamics and sediment transport in fluvial environments. This research presents a feasible strategy for applying state‐of‐the‐art computational fluid mechanics to the study of sediment transport and morphodynamic processes in lateral separation zones, which are common features in canyon rivers where massive lateral flow separation causes large‐scale turbulence that controls sediment erosion and deposition. An eddy‐resolving model was developed and tested at the field‐scale, coupling a viscous flow and sediment transport solver using Detached Eddy Simulation techniques. A morphodynamic model was applied to the viscous flow/sediment solver to calculate erosion and deposition. A simulation of turbulence was performed at the grid resolution for a straight channel to determine the relative contributions of modeled and resolved diffusivity. The time‐dependent, energetically important, correlative, non‐stationary signals of the simulated quantities were captured at the lateral separation zone. Strong periodic signals featured by high amplitude were found at the separation zone, while low frequency pulsations were observed at the reattachment zone of the lateral separation zone. Interactions between the eddies and the loose bed boundaries resulted in erosion of sediment at the main channel followed by deposition at the primary eddy and eddy bars.

more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In meandering rivers, interactions between flow, sediment transport, and bed topography affect diverse processes, including bedform development and channel migration. Predicting how these interactions affect the spatial patterns and magnitudes of bed deformation in meandering rivers is essential for various river engineering and geoscience problems. Computational fluid dynamics simulations can predict river morphodynamics at fine temporal and spatial scales but have traditionally been challenged by the large scale of natural rivers. We conducted coupled large‐eddy simulation and bed morphodynamics simulations to create a unique database of hydro‐morphodynamic data sets for 42 meandering rivers with a variety of planform shapes and large‐scale geometrical features that mimic natural meanders. For each simulated river, the database includes (a) bed morphology, (b) three‐dimensional mean velocity field, and (c) bed shear stress distribution under bankfull flow conditions. The calculated morphodynamics results at dynamic equilibrium revealed the formation of scour and deposition patterns near the outer and inner banks, respectively, while the location of point bars and scour regions around the apexes of the meander bends is found to vary as a function of the radius of curvature of the bends to the width ratio. A new mechanism is proposed that explains this seemingly paradoxical finding. The high‐fidelity simulation results generated in this work provide researchers and scientists with a rich numerical database for morphodynamics and bed shear stress distributions in large‐scale meandering rivers to enable systematic investigation of the underlying phenomena and support a range of river engineering applications.

    more » « less
  2. Abstract

    Modeling transport, erosion, and deposition of nonuniform sediment over temporal intervals that are short compared to those characterizing channel bed aggradation and degradation remains an open problem due to the complex quantification of the sediment fluxes between the bed material load and the alluvial deposit. Parker, Paola, and Leclair in 2000 proposed a morphodynamic (PPL) framework to overcome this problem. This framework is used here to model the dispersal of a patch of gravel tracers in three different settings, a laboratory flume, a mountain creek, and a braided river. To simplify the problem, (a) the bed slope, bedload transport rate, and bed configuration are assumed to be constant in space and time (equilibrium), (b) sediment entrainment and deposition are modeled with a constant step length formulation, and (c) the PPL framework is implemented in a one‐dimensional (laterally averaged) model. Model validation against laboratory experiments suggests that, as the transport capacity of the flow increases, the maximum elevation‐specific density of sediment entrainment may migrate downward in the deposit. The comparison between model results and field data shows that the equilibrium solution can reasonably capture tracer dispersal. The equilibrium model can also reproduce subdiffusion and superdiffusion of a patch of tracers in the streamwise direction, depending on the magnitude of the short‐term bed level changes. Finally, the average tracer elevation in a cross‐section decreases in time because particles that are buried deep in the deposit are only rarely reentrained into bedload transport.

    more » « less
  3. A three-dimensional Eulerian two-phase flow solver, SedFoam, has been developed for various sediment transport applications. The solver has demonstrated success in modeling sheet flow and bedforms driven by oscillatory flows using a Reynolds-averaged Navier–Stokes (RANS) formulation. However, the accuracy of the RANS formulation for more complex flows, such as scour around structures, requires further evaluation. SedFoam has recently been enhanced to incorporate two-phase large-eddy simulation (LES) capability. In this study, RANS and LES approaches are tested via a three-dimensional case of wave-induced local scour around a single vertical circular pile. Two laboratory experiments, one with an erodible bed and the other with a rigid bed, were chosen for simulation, with both experiments having a Keulegan-Carpenter (KC) number of 10. The k-ω turbulence closure was selected for the RANS simulation, and the dynamic Lagrangian subgrid closure was chosen for the LES simulation. Numerical results reveal that both RANS and LES simulations can resolve lee-wake vortices, although the vortices are significantly weaker in the RANS simulation. In comparison with the LES results, the RANS approach fails to predict horseshoe vortex with sufficient intensity, leading to an underestimation of scour hole depth development. Although the scour depths develop at a very similar rate in the early stage, the scour depth predicted by the RANS simulation quickly reaches equilibrium, while the LES simulation follows the measured trend. These findings indicate that a turbulence-resolving methodology, i.e. LES, is necessary for accurate scour simulations. 
    more » « less
  4. Abstract

    The drastic decline in sediment discharge experienced by large rivers in recent years might trigger erosion thus increasing the vulnerability of their extensive deltas. However, scarce information is available on the erosion patterns in mega‐deltas and associated physical drivers. Here a series of bathymetries in the South Passage, Changjiang Delta, were analyzed to identify morphodynamic variations during high riverine flow and tropical cyclones (TCs). Results indicate that high river flow during flood season triggers large‐scale net erosion along the inner estuary, generating elongated erosion‐deposition patches. Erosion magnitude gradually weakens moving seaward with few localized bottom variations in the offshore area. TCs transport sediment landward and are accompanied by an overall weak erosion, with a less organized spatial pattern of erosion‐deposition. TCs can therefore significantly alleviate erosion, reducing the sediment loss induced by riverine flows by over 50%. These results highlight the role of TCs on the sediment dynamics of mega‐deltas.

    more » « less
  5. null (Ed.)
    Abstract Mangrove swamps are extremely productive ecosystems providing many ecological services in coastal regions. The hydrodynamic interactions of mangrove roots and water flow have been proposed as a key element to mitigate erosion. Several studies reveal that precise prediction of the morphological evolution of coastal areas, in the face of global warming and the consequent sea-level rise, requires an understanding of interactions between root porosity (the fraction of the volume of void space over the total volume), water flows, and sediment transport. Water flows around the mangrove prop roots create a complex energetic process that mixes up sediments and generates a depositional region posterior to the roots. In this work, we investigated the boundary layer behind permeable arrays of cylinders (patch) that represent the mangrove roots to explore the impact of patch porosity on the onset of sediment transport. The flow measurements were performed in a vertical plane along the water depth downstream of the mangrove root models. A high-resolution Particle Image Velocimetry (PIV) was used in a flume to observe the impact of porosity on the mean flow, velocity derivatives, skin friction coefficient, and production of turbulent kinetic energy for Reynolds number of 2500 (based on patch diameter length-scale). Here, we proposed a predictive model for critical velocity for incipient motion that takes into account the mangrove roots porosity and the near-bed turbulence effect. It is found that the patch with the $$\phi =47\%$$ ϕ = 47 % porosity, has the maximum critical velocity over which the sediment transport initiates. We found the optimum porosity has the minimum sediment erosion and creates negative vorticity sources near the bed that increases the critical velocity. This signifies an optimum porosity for the onset of sediment transport consistent with the porosity of mangroves in nature. The phenomenological model is elucidated based on an analysis of the vorticity evolution equation for viscous incompressible flows. For the optimum porous patch, a sink of vorticity was formed which yielded to lower the near-bed turbulence and vorticity. The minimum velocity fluctuations were sufficient to initiate the boundary layer transition, however, the viscous dissipation dominated the turbulence production to obstruct the sediment transport. This work identified the pivotal role of mangrove root porosity in sediment transport in terms of velocity and its derivatives in wall-bounded flows. Our work also provides insight into the sediment transport and erosion processes that govern the evolution of the shapes of shorelines. 
    more » « less