skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Eulerian two-phase model investigation on wave-induced scour around a vertical circular cylinder
A three-dimensional Eulerian two-phase flow solver, SedFoam, has been developed for various sediment transport applications. The solver has demonstrated success in modeling sheet flow and bedforms driven by oscillatory flows using a Reynolds-averaged Navier–Stokes (RANS) formulation. However, the accuracy of the RANS formulation for more complex flows, such as scour around structures, requires further evaluation. SedFoam has recently been enhanced to incorporate two-phase large-eddy simulation (LES) capability. In this study, RANS and LES approaches are tested via a three-dimensional case of wave-induced local scour around a single vertical circular pile. Two laboratory experiments, one with an erodible bed and the other with a rigid bed, were chosen for simulation, with both experiments having a Keulegan-Carpenter (KC) number of 10. The k-ω turbulence closure was selected for the RANS simulation, and the dynamic Lagrangian subgrid closure was chosen for the LES simulation. Numerical results reveal that both RANS and LES simulations can resolve lee-wake vortices, although the vortices are significantly weaker in the RANS simulation. In comparison with the LES results, the RANS approach fails to predict horseshoe vortex with sufficient intensity, leading to an underestimation of scour hole depth development. Although the scour depths develop at a very similar rate in the early stage, the scour depth predicted by the RANS simulation quickly reaches equilibrium, while the LES simulation follows the measured trend. These findings indicate that a turbulence-resolving methodology, i.e. LES, is necessary for accurate scour simulations.  more » « less
Award ID(s):
2050854
PAR ID:
10481525
Author(s) / Creator(s):
Publisher / Repository:
INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING
Date Published:
Journal Name:
International Conference on Scour and Erosion
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k − ε, and a k − ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models. 
    more » « less
  2. Hybrid RANS-LES methods are supposed to provide major contributions to future turbulent flow simulations, in particular for reliable flow predictions under conditions where validation data are unavailable. However, existing hybrid RANS-LES methods suffer from essential problems. A solution to these problems is presented as a generalization of previously introduced continuous eddy simulation (CES) methods. These methods, obtained by relatively minor extensions of standard two-equation turbulence models, represent minimal error simulation methods. An essential observation presented here is that minimal error methods for incompressible flows can be extended to stratified and compressible flows, which opens the way to addressing relevant atmospheric science problems (mesoscale to microscale coupling) and aerospace problems (supersonic or hypersonic flow predictions). It is also reported that minimal error methods can provide valuable contributions to the design of consistent turbulence models under conditions of significant modeling uncertainties. 
    more » « less
  3. Reynolds-averaged Navier–Stokes (RANS), large eddy simulation (LES), and hybrid RANS-LES, first of all wall-modeled LES (WMLES) and detached eddy simulation (DES) methods, are regularly applied for wall-bounded turbulent flow simulations. Their characteristic advantages and disadvantages are well known: significant challenges arise from simulation performance, computational cost, and functionality issues. This paper describes the application of a new simulation approach: continuous eddy simulation (CES). CES is based on exact mathematics, and it is a minimal error method. Its functionality is different from currently applied simulation concepts. Knowledge of the actual amount of flow resolution enables the model to properly adjust to simulations by increasing or decreasing its contribution. The flow considered is a high Reynolds number complex flow, the Bachalo–Johnson axisymmetric transonic bump flow, which is often applied to evaluate the performance of turbulence models. A thorough analysis of simulation performance, computational cost, and functionality features of the CES model applied is presented in comparison with corresponding features of RANS, DES, WMLES, and wall-resolved LES (WRLES). We conclude that CES performs better than RANS, DES, WMLES, and even WRLES at a little fraction of computational cost applied for the latter methods. CES is independent of usual functionality requirements of other methods, which offers relevant additional advantages. 
    more » « less
  4. null (Ed.)
    In this work, model closures of the multiphase Reynolds-averaged Navier–Stokes (RANS) equations are developed for homogeneous, fully developed gas–particle flows. To date, the majority of RANS closures are based on extensions of single-phase turbulence models, which fail to capture complex two-phase flow dynamics across dilute and dense regimes, especially when two-way coupling between the phases is important. In the present study, particles settle under gravity in an unbounded viscous fluid. At sufficient mass loadings, interphase momentum exchange between the phases results in the spontaneous generation of particle clusters that sustain velocity fluctuations in the fluid. Data generated from Eulerian–Lagrangian simulations are used in a sparse regression method for model closure that ensures form invariance. Particular attention is paid to modelling the unclosed terms unique to the multiphase RANS equations (drag production, drag exchange, pressure strain and viscous dissipation). A minimal set of tensors is presented that serve as the basis for modelling. It is found that sparse regression identifies compact, algebraic models that are accurate across flow conditions and robust to sparse training data. 
    more » « less
  5. null (Ed.)
    Wave-induced scour plays a key role in the stability analysis of coastal structures, submarine pipelines or cables. There is a rich literature in current-induced scour, but more research is needed to understand the characteristics of wave-induced scour and the mechanisms that are important to the scour process. Sediment transport and flow-induced scour are three-phase (air-water-sediment) flow problems in nature and multi-phase flow simulation is a useful tools that can provide information difficult to obtain from physical tests. Most existing numerical models developed for simulating local scours are based on one-way coupling, which neglects effects of sediment phase on hydrodynamics of the flow. The present study uses a three-phase (air, water and sediment) flow model, which allows for a two-way coupling, to simulate wave-induced local scour problems. The three-phase flow model captures the air-water interface using a modified VOF method, and uses an improved rheology for the sediment phase for better results. The model is validated and verified using one set of existing experiment results for local scour around a submerged horizontal pipe. The detailed flow fields of both the sediment phase and the water phase around the scour are analyzed to understand the scour process. All three-phase flow simulations flow simulations on XSEDE’s Stampede2 supercomputers. The applicability of the model to other local scour problems is also discussed. 
    more » « less