Neotropical birds are mostly parasitized by immature ticks and act as reservoir hosts of tick‐borne pathogens of medical and veterinary interest. Hence, determining the factors that enable ticks to encounter these highly mobile hosts and increase the potential for tick dispersal throughout migratory flyways are important for understanding tick‐borne disease transmission. We used 9682 individual birds from 572 species surveyed across Brazil and Bayesian models to disentangle possible avian host traits and climatic drivers of infestation probabilities, accounting for avian host phylogenetic relationships and spatiotemporal factors that may influence tick prevalence. Our models revealed that the probability of an individual bird being infested with tick larvae and nymphs was lower in partial migrant hosts and during the wet season. Notably, infestation probability increased in areas with a higher proportion of partial migrant birds. Other avian ecological traits known to influence tick prevalence (foraging habitat and body mass) and environmental condition that might constrain tick abundance (annual precipitation and minimum temperature) did not explain infestation probability. Our findings suggest that migratory flyways harbouring a greater abundance of migrant bird hosts also harbour a higher prevalence of immature ticks with potential to enhance the local transmission of tick‐borne pathogens and spread across regions.
more » « less- PAR ID:
- 10360198
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Medical and Veterinary Entomology
- Volume:
- 35
- Issue:
- 4
- ISSN:
- 0269-283X
- Page Range / eLocation ID:
- p. 547-555
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Globally, zoonotic vector-borne diseases are on the rise and understanding their complex transmission cycles is pertinent to mitigating disease risk. In North America, Lyme disease is the most commonly reported vector-borne disease and is caused by transmission of Borrelia burgdorferi sensu lato (s.l.) from Ixodes spp. ticks to a diverse group of vertebrate hosts. Small mammal reservoir hosts are primarily responsible for maintenance of B. burgdorferi s.l. across the United States. Never- theless, birds can also be parasitized by ticks and are capable of infection with B. burgdorferi s.l. but their role in B. burgdorferi s.l. transmission dynamics is understudied. Birds could be important in both the maintenance and spread of B. burgdorferi s.l. and ticks because of their high mobility and shared habitat with important mammalian reservoir hosts. This study aims to better understand the role of avian hosts in tick-borne zoonotic disease transmission cycles in the western United States. We surveyed birds, mammals, and ticks at nine sites in northern California for B. burgdorferi s.l. infection and collected data on other metrics of host community composition such as abundance and diversity of birds, small mammals, lizards, predators, and ticks. We found 22.8% of birds infected with B. burgdorferi s.l. and that the likelihood of avian B. burgdorferi s.l. infection was significantly associated with local host community composition and pathogen prevalence in California. Addition- ally, we found an average tick burden of 0.22 ticks per bird across all species. Predator and lizard abundances were significant predictors of avian tick infestation. These results indicate that birds are relevant hosts in the local B. burgdorferi s.l. transmission cycle in the western United States and quantifying their role in the spread and maintenance of Lyme disease requires further research.more » « less
-
Abstract Aim Prediction of novel reservoirs of zoonotic pathogens would be improved by the identification of interspecific drivers of host competence (i.e., the ability to transmit pathogens to new hosts or vectors). Tick‐borne pathogens can provide a useful model system, because larvae become infected only when feeding on a competent host during their first blood meal. For tick‐borne diseases, competence has been studied best for
Borrelia burgdorferi sensu lato (Bb sl), which causes Lyme borreliosis. Major reservoirs include several small mammal species, but birds might play an under‐recognized role in human risk given their ability to disperse infected ticks across large spatial scales. Here, we provide a global synthesis of the ecological and evolutionary factors that determine the ability of bird species to infect larval ticks withBb sl.Location Global.
Time period 1983–2019.
Major taxa studied Birds.
Methods We compiled a dataset of
Bb sl competence across 183 bird species and applied meta‐analysis, phylogenetic factorization and boosted regression trees to describe spatial and temporal patterns in competence, characterize its phylogenetic distribution across birds, reconstruct its evolution and evaluate the trait profiles associated with competent avian species.Results Half of the sampled bird species show evidence of competence for
Bb sl. Competence displays moderate phylogenetic signal, has evolved multiple times across bird species and is pronounced in the genusTurdus . Trait‐based analyses distinguished competent birds with 80% accuracy and showed that such species have low baseline corticosterone, exist on both ends of the pace‐of‐life continuum, breed and winter at high latitudes and have broad migratory movements into their breeding range. We used these trait profiles to predict various likely but unsampled competent species, including novel concentrations of avian reservoirs within the Neotropics.Main conclusion Our results can generate new hypotheses for how birds contribute to the dynamics of tick‐borne pathogens and help to prioritize surveillance of likely but unsampled competent birds. Our findings also emphasize that birds display under‐recognized variation in their contributions to enzootic cycles of
Bb sl and the broader need to consider competence in ecological and predictive studies of multi‐host pathogens. -
Abstract Established tick control strategies often involve methods that can be damaging to existing environmental conditions or natural host ecology. To find more environmentally friendly methods, biological controls, like predators of ticks, have been suggested. There are natural predators of ticks, but most are generalists and not expected to control tick populations. Helmeted guinea fowl (Numida meleagris (L.) (Galliformes: Numididae)) have been suggested to be biological controls of ticks, and therefore, tick-borne pathogens, but their potential role as hosts for ticks complicates the relationship. A study was conducted to assess whether guinea fowl reduces the abundance of lone star ticks, Amblyomma americanum (L.) (Acari: Ixodidae), or whether they are hosts of ticks. Using mark–recapture techniques, painted lone star ticks were placed into 3 different treatments: penned, excluded, and free range. The recapture rates of painted ticks were compared. There was a significant difference between excluded and free-range treatments, but not between excluded and penned or between free range and penned. To investigate the role of guinea fowl as hosts of ticks, coop floors were examined for engorged ticks. Engorged lone star nymphs that had fed on guinea fowl were found. Lastly, ticks collected were tested to identify the potential reduction in risk of tick-borne pathogens. This study found no evidence that guinea fowl are an effective biological control of lone star ticks or tick-borne pathogens, but they are hosts of lone star nymphs. Future studies are needed to assess the complex ecology of a biological control of ticks that is also a host.
-
Wildlife species are often heavily parasitized by multiple infections simultaneously. Yet research on sylvatic transmission cycles, tend to focus on host interactions with a single parasite and neglects the influence of co- infections by other pathogens and parasites. Co-infections between macro-parasites and micro-parasites can alter mechanisms that regulate pathogenesis and are important for understanding disease emergence and dy- namics. Wildlife rodent hosts in the Lyme disease system are infected with macro-parasites (i.e., ticks and hel- minths) and micro-parasites (i.e., Borrelia spp.), however, there has not been a study that investigates the interaction of all three parasites (i.e., I. pacificus, Borrelia spp., and helminths) and how these co-infections impact prevalence of micro-parasites. We live-trapped rodents in ten sites in northern California to collect feces, blood, ear tissue, and attached ticks. These samples were used to test for infection status of Borrelia species (i.e., micro- parasite), and describe the burden of ticks and helminths (i.e., macro-parasites). We found that some rodent hosts were co-infected with all three parasites, however, the burden or presence of concurrent macro-parasites were not associated with Borrelia infections. For macro-parasites, we found that tick burdens were positively associ- ated with rodent Shannon diversity while negatively associated with predator diversity, whereas helminth burdens were not significantly associated with any host community metric. Ticks and tick-borne pathogens are associated with rodent host diversity, predator diversity, and abiotic factors. However, it is still unknown what factors helminths are associated with on the community level. Understanding the mechanisms that influence co- infections of multiple types of parasites within and across hosts is an increasingly critical component of characterizing zoonotic disease transmission and maintenance.more » « less
-
Tick abundance, diversity and pathogen data collected by the National Ecological Observatory NetworkCases of tick-borne diseases have been steadily increasing in the USA, owing in part to tick range expansion, land cover and associated host population changes, and habitat fragmentation. However, the relative importance of these and other potential drivers remain poorly understood within this complex disease system. Ticks are ectotherms with multi-host lifecycles, which makes them sensitive to changes in the physical environment and the ecological community. Here, we describe data collected by the National Ecological Observatory Network on tick abundance, diversity and pathogen infection. Ticks are collected using drag or flag methods multiple times in a growing season at 46 terrestrial sites across the USA. Ticks are identified and enumerated by a professional taxonomist, and a subset of nymphs are PCR-tested for various tick-borne pathogens. These data will enable multiscale analyses to better understand how drivers of tick dynamics and pathogen prevalence may shift with climate or land-use change.more » « less