skip to main content


Title: Ecological Predictors of Zoonotic Vector Status Among Dermacentor Ticks (Acari: Ixodidae): A Trait-Based Approach
Abstract

Increasing incidence of tick-borne human diseases and geographic range expansion of tick vectors elevates the importance of research on characteristics of tick species that transmit pathogens. Despite their global distribution and role as vectors of pathogens such as Rickettsia spp., ticks in the genus Dermacentor Koch, 1844 (Acari: Ixodidae) have recently received less attention than ticks in the genus Ixodes Latreille, 1795 (Acari: Ixodidae). To address this knowledge gap, we compiled an extensive database of Dermacentor tick traits, including morphological characteristics, host range, and geographic distribution. Zoonotic vector status was determined by compiling information about zoonotic pathogens found in Dermacentor species derived from primary literature and data repositories. We trained a machine learning algorithm on this data set to assess which traits were the most important predictors of zoonotic vector status. Our model successfully classified vector species with ~84% accuracy (mean AUC) and identified two additional Dermacentor species as potential zoonotic vectors. Our results suggest that Dermacentor species that are most likely to be zoonotic vectors are broad ranging, both in terms of the range of hosts they infest and the range of ecoregions across which they are found, and also tend to have large hypostomes and be small-bodied as immature ticks. Beyond the patterns we observed, high spatial and species-level resolution of this new, synthetic dataset has the potential to support future analyses of public health relevance, including species distribution modeling and predictive analytics, to draw attention to emerging or newly identified Dermacentor species that warrant closer monitoring for zoonotic pathogens.

 
more » « less
Award ID(s):
1717282
NSF-PAR ID:
10380508
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Medical Entomology
Volume:
59
Issue:
6
ISSN:
0022-2585
Page Range / eLocation ID:
p. 2158-2166
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stevenson, Brian (Ed.)
    Ticks are the most important vectors of zoonotic disease-causing pathogens in North America and Europe. Many tick species are expanding their geographic range. Although correlational evidence suggests that climate change is driving the range expansion of ticks, experimental evidence is necessary to develop a mechanistic understanding of ticks’ response to a range of climatic conditions. Previous experiments used simulated microclimates, but these protocols require hazardous salts or expensive laboratory equipment to manipulate humidity. We developed a novel, safe, stable, convenient, and economical method to isolate individual ticks and manipulate their microclimates. The protocol involves placing individual ticks in plastic tubes, and placing six tubes along with a commercial two-way humidity control pack in an airtight container. We successfully used this method to investigate how humidity affects survival and host-seeking (questing) behavior of three tick species: the lone star tick ( Amblyomma americanum ), American dog tick ( Dermacentor variabilis ), and black-legged tick ( Ixodes scapularis ). We placed 72 adult females of each species individually into plastic tubes and separated them into three experimental relative humidity (RH) treatments representing distinct climates: 32% RH, 58% RH, and 84% RH. We assessed the survival and questing behavior of each tick for 30 days. In all three species, survivorship significantly declined in drier conditions. Questing height was negatively associated with RH in Amblyomma , positively associated with RH in Dermacentor , and not associated with RH in Ixodes . The frequency of questing behavior increased significantly with drier conditions for Dermacentor but not for Amblyomma or Ixodes . This report demonstrates an effective method for assessing the viability and host-seeking behavior of tick vectors of zoonotic diseases under different climatic conditions. 
    more » « less
  2. Rich, Stephen (Ed.)
    Abstract The ability to escape predation modulates predator–prey interactions and represents a crucial aspect of organismal life history, influencing feeding, mating success, and survival. Thanatosis, also known as death feigning or tonic immobility (TI), is taxonomically widespread, but understudied in blood-feeding vectors. Hematophagous arthropods, such as ticks, are unique among animals as their predators (birds, mice, lizards, frogs, and other invertebrates) may also be their source of food. Therefore, the trade-off between predator avoidance and host-seeking may shift as the time since the last bloodmeal increases. Because ticks are slow-moving and unable to fly, or otherwise escape, we predicted that they may use TI to avoid predation, but that TI would be influenced by time since the last bloodmeal (starvation). We therefore aimed to quantify this relationship, examining the effect of starvation, body mass, and ontogeny on TI for two tick species: Dermacentor variabilis (Say) (Acari: Ixodidae) and Rhipicephalus sanguineus (Latreille) (Acari: Ixodidae). As we predicted, the duration and use of TI decreased with time since feeding and emergence across species and life stages. Therefore, ticks may become more aggressive in their search for a bloodmeal as they continue to starve, opting to treat potential predators as hosts, rather than avoiding predation by feigning death. Antipredator behaviors such as TI may influence the intensity and amount of time ticks spend searching for hosts, driving patterns of tick-borne pathogen transmission. This identification and quantification of a novel antipredation strategy add a new component to our understanding of tick life history. 
    more » « less
  3. Abstract Aim

    Prediction of novel reservoirs of zoonotic pathogens would be improved by the identification of interspecific drivers of host competence (i.e., the ability to transmit pathogens to new hosts or vectors). Tick‐borne pathogens can provide a useful model system, because larvae become infected only when feeding on a competent host during their first blood meal. For tick‐borne diseases, competence has been studied best forBorrelia burgdorferisensu lato (Bbsl), which causes Lyme borreliosis. Major reservoirs include several small mammal species, but birds might play an under‐recognized role in human risk given their ability to disperse infected ticks across large spatial scales. Here, we provide a global synthesis of the ecological and evolutionary factors that determine the ability of bird species to infect larval ticks withBbsl.

    Location

    Global.

    Time period

    1983–2019.

    Major taxa studied

    Birds.

    Methods

    We compiled a dataset ofBbsl competence across 183 bird species and applied meta‐analysis, phylogenetic factorization and boosted regression trees to describe spatial and temporal patterns in competence, characterize its phylogenetic distribution across birds, reconstruct its evolution and evaluate the trait profiles associated with competent avian species.

    Results

    Half of the sampled bird species show evidence of competence forBbsl. Competence displays moderate phylogenetic signal, has evolved multiple times across bird species and is pronounced in the genusTurdus. Trait‐based analyses distinguished competent birds with 80% accuracy and showed that such species have low baseline corticosterone, exist on both ends of the pace‐of‐life continuum, breed and winter at high latitudes and have broad migratory movements into their breeding range. We used these trait profiles to predict various likely but unsampled competent species, including novel concentrations of avian reservoirs within the Neotropics.

    Main conclusion

    Our results can generate new hypotheses for how birds contribute to the dynamics of tick‐borne pathogens and help to prioritize surveillance of likely but unsampled competent birds. Our findings also emphasize that birds display under‐recognized variation in their contributions to enzootic cycles ofBbsl and the broader need to consider competence in ecological and predictive studies of multi‐host pathogens.

     
    more » « less
  4. Abstract

    Established tick control strategies often involve methods that can be damaging to existing environmental conditions or natural host ecology. To find more environmentally friendly methods, biological controls, like predators of ticks, have been suggested. There are natural predators of ticks, but most are generalists and not expected to control tick populations. Helmeted guinea fowl (Numida meleagris (L.) (Galliformes: Numididae)) have been suggested to be biological controls of ticks, and therefore, tick-borne pathogens, but their potential role as hosts for ticks complicates the relationship. A study was conducted to assess whether guinea fowl reduces the abundance of lone star ticks, Amblyomma americanum (L.) (Acari: Ixodidae), or whether they are hosts of ticks. Using mark–recapture techniques, painted lone star ticks were placed into 3 different treatments: penned, excluded, and free range. The recapture rates of painted ticks were compared. There was a significant difference between excluded and free-range treatments, but not between excluded and penned or between free range and penned. To investigate the role of guinea fowl as hosts of ticks, coop floors were examined for engorged ticks. Engorged lone star nymphs that had fed on guinea fowl were found. Lastly, ticks collected were tested to identify the potential reduction in risk of tick-borne pathogens. This study found no evidence that guinea fowl are an effective biological control of lone star ticks or tick-borne pathogens, but they are hosts of lone star nymphs. Future studies are needed to assess the complex ecology of a biological control of ticks that is also a host.

     
    more » « less
  5. Hamer, Sarah (Ed.)
    Abstract Throughout North America, Dermacentor spp. ticks are often found feeding on animals and humans, and are known to transmit pathogens, including the Rocky Mountain spotted fever agent. To better define the identity and distribution of Dermacentor spp. removed from dogs and cats in the United States, ticks submitted from 1,457 dogs (n = 2,924 ticks) and 137 cats (n = 209 ticks) from veterinary practices in 44/50 states from February 2018-January 2020 were identified morphologically (n = 3,133); the identity of ticks from regions where Dermacentor andersoni (Stiles) have been reported, and a subset of ticks from other regions, were confirmed molecularly through amplification and sequencing of the ITS2 region and a 16S rRNA gene fragment. Of the ticks submitted, 99.3% (3,112/3,133) were Dermacentor variabilis (Say), 0.4% (12/3,133) were D. andersoni, and 0.3% (9/3,133) were Dermacentor albipictus (Packard). While translocation of pets prior to tick removal cannot be discounted, the majority (106/122; 87%) of Dermacentor spp. ticks removed from dogs and cats in six Rocky Mountain states (Montana, Idaho, Wyoming, Nevada, Utah, and Colorado) were D. variabilis, suggesting this species may be more widespread in the western United States than is currently recognized, or that D. andersoni, if still common in the region, preferentially feeds on hosts other than dogs and cats. Together, these data support the interpretation that D. variabilis is the predominant Dermacentor species found on pets throughout the United States, a finding that may reflect recent shifts in tick distribution. 
    more » « less