skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tuning Microbial Activity via Programmatic Alteration of Cell/Substrate Interfaces
Abstract A wide portfolio of advanced programmable materials and structures has been developed for biological applications in the last two decades. Particularly, due to their unique properties, semiconducting materials have been utilized in areas of biocomputing, implantable electronics, and healthcare. As a new concept of such programmable material design, biointerfaces based on inorganic semiconducting materials as substrates introduce unconventional paths for bioinformatics and biosensing. In particular, understanding how the properties of a substrate can alter microbial biofilm behavior enables researchers to better characterize and thus create programmable biointerfaces with necessary characteristics on demand. Herein, the current status of advanced microorganism–inorganic biointerfaces is summarized along with types of responses that can be observed in such hybrid systems. This work identifies promising inorganic material types along with target microorganisms that will be critical for future research on programmable biointerfacial structures.  more » « less
Award ID(s):
1653383
PAR ID:
10360312
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
33
Issue:
46
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Architected materials exhibit unique properties and functionalities based on the geometric arrangement of their constituent materials. In most cases, these parameters are fixed, requiring that the system be redesigned and reconstructed if different properties are desired. Both stimuli‐responsive materials and modular designs have been used to enable re‐programmable properties in the past, but often have limitations, such as the need for a continuous application of external stimuli or power, or unwanted global morphing. In this study, a locally stable anti‐tetra chiral (LSAT) metamaterial is introduced consisting of independently multistable units that can deform and change state without inducing changes in the global morphology. Adjacent cells are only weakly coupled, allowing the collective metamaterial to be switched between many different possible states. Local bistability enables re‐programmable heterogeneity, such as the snapping of cells along an edge or diagonally within the architected material. Utilizing finite element analysis (FEA), the influence of key geometric parameters on the re‐programmability of the metamaterials is systematically investigated. The effect of these parameters on properties such as shear stiffness, Poisson's ratio, and vibration are also investigated using experimental prototypes. This re‐programmable metamaterial promises to expand the design space for mechanical systems, with potential applications in non‐traditional computation, robotic actuation, and adaptive structures. 
    more » « less
  2. Two-dimensional (2D) organic–inorganic hybrid halide perovskites exhibit unique properties, such as long charge carrier lifetimes, high photoluminescence quantum efficiencies, and great tolerance to defects. Over the last several decades tremendous progress has occurred in the development of 2D layered halide perovskite semiconductor materials and devices. Chemical functionalization of 2D halide perovskites is an effective approach for tuning their electronic properties. A large amount of effort has been made in compositional engineering of the cations and anions in the perovskite lattice. However, few efforts have incorporated rationally designed semiconducting organic moieties into these systems to alter the overall chemical and optoelectronic properties of 2D perovskites. In fact, incorporation of large conjugated organic groups in the spatially confined inorganic perovskite matrix was found to be challenging, and this synthetic challenge hinders a deeper understanding of the materials’ structure–property relationships. Recently, exciting progress has been made regarding the molecular design, optical characterization, and device fabrication of novel 2D halide perovskite materials that incorporate functional organic semiconducting building blocks. In this article, we provide a timely review regarding this recent progress. Moreover, we discuss successes and current challenges regarding the synthesis, characterization, and device applications of such hybrid materials and provide a perspective on the true future promise of these advanced nanomaterials. 
    more » « less
  3. Organic semiconducting small molecules have attracted increasing interest over the last decades because of their versatile, tunable optoelectronic properties and, e.g. , the ease they can be purified compared to polymeric systems. Hence, over the past few decades, a large number of small molecules, such as acenes and thiophenes, have been explored for use in semiconducting devices such as thin-film transistors. However, many of these materials can adopt various molecular arrangements, producing polymorphic structures. As a result, the same material can display vastly different optoelectronic properties. This can, in many cases, lead to a large spread of device performances. Hence, it is critical to establish knowledge- and characterization libraries towards relevant structure/processing/performance interrelations to further advance this interesting class of materials and to open new application platforms. Here, we discuss processing strategies and methodologies that allow the control and assessment of polymorph formation in semiconducting small molecules using 5,11-bis(triethylsilylethynyl)anthradithiophene (TES ADT) as a model material system. We revise how a window into the complex phase behavior of semiconducting small molecules can be obtained, how specific polymorphs can be induced, and how post-deposition treatments can be exploited. Moreover, we illustrate pathways towards patterned structures as needed to fully exploit the touted potential of this interesting class of semiconductors. 
    more » « less
  4. Abstract Fish scales inspired materials platform can provide advanced mechanical properties and functionalities. These materials, inspired from fish scales take the form of either composite materials or multi-material discrete exoskeleton type structures. Over the last decade, they have been under intense scrutiny for generating tailorable and tunable stiffness, penetration and fracture resistance, buckling prevention, nonlinear damping, hydrodynamic and camouflaging functions. Such programmable behavior emerges from leveraging their unique morphology and structure-property relationships. Several advanced tools of characterization, manufacturing, modeling and computation have been employed to understand and discover their behavior. With the rapid proliferation of additive manufacturing (AM) techniques, and advancing envelope of modeling and computational methods, this field is seeing renewed efforts to realize even more ambitious designs. We present a review and recapitulation of the state-of-the art in fish scale inspired materials in this paper. 
    more » « less
  5. Abstract The highly intricate structures of biological systems make the precise probing of biological behaviors at the cellular‐level particularly difficult. As an advanced toolset capable of exploring diverse biointerfaces, high‐aspect‐ratio nanowires stand out with their unique mechanical, optical, and electrical properties. Specifically, semiconductor nanowires show much promise in their tunability and feasibility for synthesis and fabrication. Thus far, semiconductor nanowires have shown favorable results in deciphering biological communications and translating this cellular language through the nanowire‐based biointerfaces. In this perspective, the synthesis and fabrication methods for different kinds of nanowires and nanowire‐based structures are first surveyed. Next, several cellular‐level nanowire‐enabled applications in biophysical dynamics probing, physiological or biochemical sensing, and biological activity modulation are highlighted. Then, the progress of functionalized nanowires in drug delivery and bioenergy production is reviewed. Finally, the current limitations of nanowires and an outlook into the next generation of nanowire‐based devices at the biointerfaces are concluded. 
    more » « less