skip to main content


Title: Cooling Improves Cosmic Microwave Background Map-making when Low-frequency Noise is Large
Abstract

In the context of cosmic microwave background data analysis, we study the solution to the equation that transforms scanning data into a map. As originally suggested in “messenger” methods for solving linear systems, we split the noise covariance into uniform and nonuniform parts and adjust their relative weights during the iterative solution. With simulations, we study mock instrumental data with different noise properties, and find that this “cooling” or perturbative approach is particularly effective when there is significant low-frequency noise in the timestream. In such cases, a conjugate gradient algorithm applied to this modified system converges faster and to a higher fidelity solution than the standard conjugate gradient approach. We give an analytic estimate for the parameter that controls how gradually the linear system should change during the course of the solution.

 
more » « less
Award ID(s):
1815887
NSF-PAR ID:
10360355
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
922
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 97
Size(s):
["Article No. 97"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The goal of this study is to develop a new computed tomography (CT) image reconstruction method, aiming at improving the quality of the reconstructed images of existing methods while reducing computational costs. Existing CT reconstruction is modeled by pixel-based piecewise constant approximations of the integral equation that describes the CT projection data acquisition process. Using these approximations imposes a bottleneck model error and results in a discrete system of a large size. We propose to develop a content-adaptive unstructured grid (CAUG) based regularized CT reconstruction method to address these issues. Specifically, we design a CAUG of the image domain to sparsely represent the underlying image, and introduce a CAUG-based piecewise linear approximation of the integral equation by employing a collocation method. We further apply a regularization defined on the CAUG for the resulting ill-posed linear system, which may lead to a sparse linear representation for the underlying solution. The regularized CT reconstruction is formulated as a convex optimization problem, whose objective function consists of a weighted least square norm based fidelity term, a regularization term and a constraint term. Here, the corresponding weighted matrix is derived from the simultaneous algebraic reconstruction technique (SART). We then develop a SART-type preconditioned fixed-point proximity algorithm to solve the optimization problem. Convergence analysis is provided for the resulting iterative algorithm. Numerical experiments demonstrate the superiority of the proposed method over several existing methods in terms of both suppressing noise and reducing computational costs. These methods include the SART without regularization and with the quadratic regularization, the traditional total variation (TV) regularized reconstruction method and the TV superiorized conjugate gradient method on the pixel grid. 
    more » « less
  2. Purpose

    To develop a non‐Cartesian k‐space reconstruction method using self‐calibrated region‐specific interpolation kernels for highly accelerated acquisitions.

    Methods

    In conventional non‐Cartesian GRAPPA with through‐time GRAPPA (TT‐GRAPPA), the use of region‐specific interpolation kernels has demonstrated improved reconstruction quality in dynamic imaging for highly accelerated acquisitions. However, TT‐GRAPPA requires the acquisition of a large number of separate calibration scans. To reduce the overall imaging time, we propose Self‐calibrated Interpolation of Non‐Cartesian data with GRAPPA (SING) to self‐calibrate region‐specific interpolation kernels from dynamic undersampled measurements. The SING method synthesizes calibration data to adapt to the distinct shape of each region‐specific interpolation kernel geometry, and uses a novel local k‐space regularization through an extension of TT‐GRAPPA. This calibration approach is used to reconstruct non‐Cartesian images at high acceleration rates while mitigating noise amplification. The reconstruction quality of SING is compared with conjugate‐gradient SENSE and TT‐GRAPPA in numerical phantoms and in vivo cine data sets.

    Results

    In both numerical phantom and in vivo cine data sets, SING offers visually and quantitatively similar reconstruction quality to TT‐GRAPPA, and provides improved reconstruction quality over conjugate‐gradient SENSE. Furthermore, temporal fidelity in SING and TT‐GRAPPA is similar for the same acceleration rates. G‐factor evaluation over the heart shows that SING and TT‐GRAPPA provide similar noise amplification at moderate and high rates.

    Conclusion

    The proposed SING reconstruction enables significant improvement of acquisition efficiency for calibration data, while matching the reconstruction performance of TT‐GRAPPA.

     
    more » « less
  3. SUMMARY

    We use source-encoded waveform inversion to image Earth’s Northern Hemisphere. The encoding method is based on measurements of Laplace coefficients of stationary wavefields. By assigning to each event a unique frequency, we compute Fréchet derivatives for all events simultaneously based on one ‘super’ forward and one ‘super’ adjoint simulation for a small fraction of the computational cost of classical waveform inversion with the same data set. No cross-talk noise is introduced in the process, and the method does not require all events to be recorded by all stations. Starting from global model GLAD_M25, we performed 100 conjugate gradient iterations using a data set consisting of 786 earthquakes recorded by 9846 stations. Synthetic inversion tests show that we achieve good convergence based on this data set, and we see a consistent misfit reduction during the inversion. The new model, named SE100, has much higher spatial resolution than GLAD_M25, revealing details of the Yellowstone and Iceland hotspots, subduction beneath the Western United States and the upper mantle structure beneath the Arctic Ocean.

     
    more » « less
  4. SUMMARY

    A fast algorithm for the large-scale joint inversion of gravity and magnetic data is developed. The algorithm uses a non-linear Gramian constraint to impose correlation between the density and susceptibility of the reconstructed models. The global objective function is formulated in the space of the weighted parameters, but the Gramian constraint is implemented in the original space, and the non-linear constraint is imposed using two separate Lagrange parameters, one for each model domain. It is significant that this combined approach, using the two spaces provides more similarity between the reconstructed models. Moreover, it is shown theoretically that the gradient for the use of the unweighted space is not a scalar multiple of that used for the weighted space, and hence cannot be accounted for by adjusting the Lagrange parameters. It is assumed that the measured data are obtained on a uniform grid and that a consistent regular discretization of the volume domain is imposed. Then, the sensitivity matrices exhibit a block-Toeplitz-Toeplitz-block structure for each depth layer of the model domain, and both forward and transpose operations with the matrices can be implemented efficiently using two dimensional fast Fourier transforms. This makes it feasible to solve for large scale problems with respect to both computational costs and memory demands, and to solve the non-linear problem by applying iterative methods that rely only on matrix–vector multiplications. As such, the use of the regularized reweighted conjugate gradient algorithm, in conjunction with the structure of the sensitivity matrices, leads to a fast methodology for large-scale joint inversion of geophysical data sets. Numerical simulations demonstrate that it is possible to apply a non-linear joint inversion algorithm, with Lp-norm stabilisers, for the reconstruction of large model domains on a standard laptop computer. It is demonstrated, that while the p = 1 choice provides sparse reconstructed solutions with sharp boundaries, it is also possible to use p = 2 in order to provide smooth and blurred models. The methodology is used for inverting gravity and magnetic data obtained over an area in northwest of Mesoproterozoic St Francois Terrane, southeast of Missouri, USA.

     
    more » « less
  5. Summary

    We consider sparse spatial mixed linear models, particularly those described by Besag and Higdon, and develop an h-likelihood method for their statistical inference. The method proposed allows for singular precision matrices, as it produces estimates that coincide with those from the residual maximum likelihood based on appropriate differencing of the data and has a novel approach to estimating precision parameters by a gamma linear model. Furthermore, we generalize the h-likelihood method to include continuum spatial variations by making explicit use of scaling limit connections between Gaussian intrinsic Markov random fields on regular arrays and the de Wijs process. Keeping various applications of spatial mixed linear models in mind, we devise a novel sparse conjugate gradient algorithm that allows us to achieve fast matrix-free statistical computations. We provide two applications. The first is an extensive analysis of an agricultural variety trial that brings forward various new aspects of nearest neighbour adjustment such as effects on statistical analyses to changes of scale and use of implicit continuum spatial formulation. The second application concerns an analysis of a large cotton field which gives a focus to matrix-free computations. The paper closes with some further considerations, such as applications to irregularly spaced data, use of the parametric bootstrap and some generalizations to the Gaussian Matérn mixed effect models.

     
    more » « less