skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1815887

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present cosmological constraints derived from peak counts, minimum counts, and the angular power spectrum of the Subaru Hyper Suprime-Cam first-year (HSC Y1) weak lensing shear catalogue. Weak lensing peak and minimum counts contain non-Gaussian information and hence are complementary to the conventional two-point statistics in constraining cosmology. In this work, we forward-model the three summary statistics and their dependence on cosmology, using a suite of N-body simulations tailored to the HSC Y1 data. We investigate systematic and astrophysical effects including intrinsic alignments, baryon feedback, multiplicative bias, and photometric redshift uncertainties. We mitigate the impact of these systematics by applying cuts on angular scales, smoothing scales, signal-to-noise ratio bins, and tomographic redshift bins. By combining peaks, minima, and the power spectrum, assuming a flat-ΛCDM model, we obtain $$S_{8} \equiv \sigma _8\sqrt{\Omega _m/0.3}= 0.810^{+0.022}_{-0.026}$$, a 35 per cent tighter constraint than that obtained from the angular power spectrum alone. Our results are in agreement with other studies using HSC weak lensing shear data, as well as with Planck 2018 cosmology and recent CMB lensing constraints from the Atacama Cosmology Telescope and the South Pole Telescope. 
    more » « less
  2. Abstract In the context of cosmic microwave background data analysis, we study the solution to the equation that transforms scanning data into a map. As originally suggested in “messenger” methods for solving linear systems, we split the noise covariance into uniform and nonuniform parts and adjust their relative weights during the iterative solution. With simulations, we study mock instrumental data with different noise properties, and find that this “cooling” or perturbative approach is particularly effective when there is significant low-frequency noise in the timestream. In such cases, a conjugate gradient algorithm applied to this modified system converges faster and to a higher fidelity solution than the standard conjugate gradient approach. We give an analytic estimate for the parameter that controls how gradually the linear system should change during the course of the solution. 
    more » « less
  3. We present a measurement of the cross-correlation between theMagLimgalaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over ∼ 436 sq. deg of the sky. Our galaxy sample, which covers ∼ 4143 sq. deg, is divided into six redshift bins spanning the redshift range of 0.20 < z < 1.05. We adopt a blinding procedure until passing all consistency and systematics tests. After imposing scale cuts for the cross-power spectrum measurement, we reject the null hypothesis of no correlation at 9.1σ. We constrain cosmological parameters from a joint analysis of galaxy and CMB lensing-galaxy power spectra considering a flat ΛCDM model, marginalized over 23 astrophysical and systematic nuisance parameters. We find the clustering amplitude S_8 ≡ σ_8(Ω_m/0.3)^0.5 = 0.75+0.04-0.05. In addition, we constrain the linear growth of cosmic structure as a function of redshift. Our results are consistent with recent DES Y3 analyses and suggest a preference for a lower S_8 compared to results from measurements of CMB anisotropies by the Planck satellite, although at a mild level (< 2σ) of statistical significance. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)