skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: First Space-VLBI Observations of Sagittarius A*
Abstract We report results from the first Earth-space VLBI observations of the Galactic Center supermassive black hole, Sgr A*. These observations used the space telescope Spektr-R of the RadioAstron project together with a global network of 20 ground telescopes, observing at a wavelength of 1.35 cm. Spektr-R provided baselines up to 3.9 times the diameter of the Earth, corresponding to an angular resolution of approximately 55μas and a spatial resolution of 5.5RSchat the source, whereRSch≡ 2GM/c2is the Schwarzschild radius of Sgr A*. Our short ground baseline measurements ( ≲ 80 Mλ) are consistent with an anisotropic Gaussian image, while our intermediate ground baseline measurements (100–250 Mλ) confirm the presence of persistent image substructure in Sgr A*. Both features are consistent with theoretical expectations for strong scattering in the ionized interstellar medium, which produces Gaussian scatter-broadening on short baselines and refractive substructure on long baselines. We do not detect interferometric fringes on any of the longer ground baselines or on any ground–space baselines. While space-VLBI offers a promising pathway to sharper angular resolution and the measurement of key gravitational signatures in black holes, such as their photon rings, our results demonstrate that space-VLBI studies of Sgr A* will require sensitive observations at submillimeter wavelengths.  more » « less
Award ID(s):
1935980
PAR ID:
10360409
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
922
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L28
Size(s):
Article No. L28
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The first very long baseline interferometry (VLBI) detections at 870μm wavelength (345 GHz frequency) are reported, achieving the highest diffraction-limited angular resolution yet obtained from the surface of the Earth and the highest-frequency example of the VLBI technique to date. These include strong detections for multiple sources observed on intercontinental baselines between telescopes in Chile, Hawaii, and Spain, obtained during observations in 2018 October. The longest-baseline detections approach 11 Gλ, corresponding to an angular resolution, or fringe spacing, of 19μas. The Allan deviation of the visibility phase at 870μm is comparable to that at 1.3 mm on the relevant integration timescales between 2 and 100 s. The detections confirm that the sensitivity and signal chain stability of stations in the Event Horizon Telescope (EHT) array are suitable for VLBI observations at 870μm. Operation at this short wavelength, combined with anticipated enhancements of the EHT, will lead to a unique high angular resolution instrument for black hole studies, capable of resolving the event horizons of supermassive black holes in both space and time. 
    more » « less
  2. Context.The 2017 observing campaign of the Event Horizon Telescope (EHT) delivered the first very long baseline interferometry (VLBI) images at the observing frequency of 230 GHz, leading to a number of unique studies on black holes and relativistic jets from active galactic nuclei (AGN). In total, eighteen sources were observed, including the main science targets, Sgr A* and M 87, and various calibrators. Sixteen sources were AGN. Aims.We investigated the morphology of the sixteen AGN in the EHT 2017 data set, focusing on the properties of the VLBI cores: size, flux density, and brightness temperature. We studied their dependence on the observing frequency in order to compare it with the Blandford-Königl (BK) jet model. In particular, we aimed to study the signatures of jet acceleration and magnetic energy conversion. Methods.We modeled the source structure of seven AGN in the EHT 2017 data set using linearly polarized circular Gaussian components (1749+096, 1055+018, BL Lac, J0132–1654, J0006–0623, CTA 102, and 3C 454.3) and collected results for the other nine AGN from dedicated EHT publications, complemented by lower frequency data in the 2–86 GHz range. Combining these data into a multifrequency EHT+ data set, we studied the dependences of the VLBI core component flux density, size, and brightness temperature on the frequency measured in the AGN host frame (and hence on the distance from the central black hole), characterizing them with power law fits. We compared the observations with the BK jet model and estimated the magnetic field strength dependence on the distance from the central black hole. Results.Our observations spanning event horizon to parsec scales indicate a deviation from the standard BK model, particularly in the decrease of the brightness temperature with the observing frequency. Only some of the discrepancies may be alleviated by tweaking the model parameters or the jet collimation profile. Either bulk acceleration of the jet material, energy transfer from the magnetic field to the particles, or both are required to explain the observations. For our sample, we estimate a general radial dependence of the Doppler factorδ ∝ r≤0.5. This interpretation is consistent with a magnetically accelerated sub-parsec jet. We also estimate a steep decrease of the magnetic field strength with radiusB ∝ r−3, hinting at jet acceleration or efficient magnetic energy dissipation. 
    more » « less
  3. Abstract Event Horizon Telescope (EHT) images of the horizon-scale emission around the Galactic center supermassive black hole Sagittarius A* (Sgr A*) favor accretion flow models with a jet component. However, this jet has not been conclusively detected. Using the “best-bet” models of Sgr A* from the EHT Collaboration, we assess whether this nondetection is expected for current facilities and explore the prospects of detecting a jet with very-long-baseline interferometry (VLBI) at four frequencies: 86, 115, 230, and 345 GHz. We produce synthetic image reconstructions for current and next-generation VLBI arrays at these frequencies that include the effects of interstellar scattering, optical depth, and time variability. We find that no existing VLBI arrays are expected to detect the jet in these best-bet models, consistent with observations to date. We show that next-generation VLBI arrays at 86 and 115 GHz—in particular, the EHT after upgrades through the ngEHT program and the ngVLA—successfully capture the jet in our tests due to improvements in instrument sensitivity and (u,v) coverage at spatial scales critical to jet detection. These results highlight the potential of enhanced VLBI capabilities in the coming decade to reveal the crucial properties of Sgr A* and its interaction with the Galactic center environment. 
    more » « less
  4. Abstract In 1977, Blandford and Znajek showed that the electromagnetic field surrounding a rotating black hole can harvest its spin energy and use it to power a collimated astrophysical jet, such as the one launched from the center of the elliptical galaxy M87. Today, interferometric observations with the Event Horizon Telescope (EHT) are delivering high-resolution, event-horizon-scale, polarimetric images of the supermassive black hole M87* at the jet launching point. These polarimetric images offer an unprecedented window into the electromagnetic field structure around a black hole. In this paper, we show that a simple polarimetric observable—the phase ∠β2of the second azimuthal Fourier mode of the linear polarization in a near-horizon image—depends on the sign of the electromagnetic energy flux and therefore provides a direct probe of black hole energy extraction. In Boyer–Lindquist coordinates, the Poynting flux for axisymmetric electromagnetic fields is proportional to the productBϕBr. The phase ∠β2likewise depends on the ratioBϕ/Br, thereby enabling an observer to determine the direction of electromagnetic energy flow in the near-horizon environment experimentally. Data from the 2017 EHT observations of M87* are consistent with electromagnetic energy outflow. Currently envisioned multifrequency observations of M87* will achieve higher dynamic range and angular resolution, and hence deliver measurements of ∠β2closer to the event horizon as well as better constraints on Faraday rotation. Such observations will enable a definitive test for energy extraction from the black hole M87*. 
    more » « less
  5. Abstract The Event Horizon Telescope (EHT) has imaged two supermassive black holes, Messier 87* (M87*) and Sagittarius A* (Sgr A*), using very-long-baseline interferometry (VLBI). The theoretical analyses of each source suggest magnetically arrested disk (MAD) accretion viewed at modest inclination. These MADs exhibit rotationally symmetric polarization of synchrotron emission caused by symmetries of their ordered magnetic fields. We leverage these symmetries to study the detectability of the black hole photon ring, which imposes known antisymmetries in polarization. In this Letter, we propose a novel observational strategy based on coherent baseline averaging of polarization ratios On a rotating basis to detect the photon ring with 345 GHz VLBI from the Earth’s surface. Using synthetic observations from a likely future EHT, we find a reversal in polarimetric phases on long baselines that reveals the presence of the Sgr A* photon ring in a MAD system at 345 GHz, a critical frequency for lengthening baselines and overcoming interstellar scattering. We use our synthetic data and analysis pipeline to estimate requirements for the EHT using a new metric: SNRPR, the signal-to-noise ratio of this polarimetric reversal signal. We identify long, coherent integrations using frequency phase transfer as a critical enabling technique for the detection of the photon ring and predict a SNRPR∼ 2−3 detection using proposed next-generation Event Horizon Telescope parameters and currently favored models for the Sgr A* accretion flow. We find that higher sensitivity, rather than denser Fourier sampling, is the most critical requirement for polarimetric detection of the photon ring. 
    more » « less