Amyotrophic lateral sclerosis (ALS) has an interactive, multifactorial etiology that makes treatment success elusive. This study evaluates how regulatory dynamics impact disease progression and treatment. Computational models of wild-type (WT) and transgenic SOD1-G93A mouse physiology dynamics were built using the first-principles-based first-order feedback framework of dynamic meta-analysis with parameter optimization. Two in silico models were developed: a WT mouse model to simulate normal homeostasis and a SOD1-G93A ALS model to simulate ALS pathology dynamics and their response to in silico treatments. The model simulates functional molecular mechanisms for apoptosis, metal chelation, energetics, excitotoxicity, inflammation, oxidative stress, and proteomics using curated data from published SOD1-G93A mouse experiments. Temporal disease progression measures (rotarod, grip strength, body weight) were used for validation. Results illustrate that untreated SOD1-G93A ALS dynamics cannot maintain homeostasis due to a mathematical oscillating instability as determined by eigenvalue analysis. The onset and magnitude of homeostatic instability corresponded to disease onset and progression. Oscillations were associated with high feedback gain due to hypervigilant regulation. Multiple combination treatments stabilized the SOD1-G93A ALS mouse dynamics to near-normal WT homeostasis. However, treatment timing and effect size were critical to stabilization corresponding to therapeutic success. The dynamics-based approach redefines therapeutic strategies by emphasizing the restoration of homeostasis through precisely timed and stabilizing combination therapies, presenting a promising framework for application to other multifactorial neurodegenerative diseases.
more »
« less
Quantifying neurotransmitter secretion at single-vesicle resolution using high-density complementary metal–oxide–semiconductor electrode array
Abstract Neuronal exocytosis facilitates the propagation of information through the nervous system pertaining to bodily function, memory, and emotions. Using amperometry, the sub-millisecond dynamics of exocytosis can be monitored and the modulation of exocytosis due to drug treatment or neurodegenerative diseases can be studied. Traditional single-cell amperometry is a powerful technique for studying the molecular mechanisms of exocytosis, but it is both costly and labor-intensive to accumulate statistically significant data. To surmount these limitations, we have developed a silicon-based electrode array with 1024 on-chip electrodes that measures oxidative signal in 0.1 millisecond intervals. Using the developed device, we are able to capture the modulation of exocytosis due to Parkinson’s disease treatment (L-Dopa), with statistical significance, within 30 total minutes of recording. The validation study proves our device’s capability to accelerate the study of many pharmaceutical treatments for various neurodegenerative disorders that affect neurotransmitter secretion to a matter of minutes.
more »
« less
- Award ID(s):
- 1745364
- PAR ID:
- 10360508
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract ObjectiveNeurodegenerative conditions often manifest radiologically with the appearance of premature aging. Multiple sclerosis (MS) biomarkers related to lesion burden are well developed, but measures of neurodegeneration are less well‐developed. The appearance of premature aging quantified by machine learning applied to structural MRI assesses neurodegenerative pathology. We assess the explanatory and predictive power of “brain age” analysis on disability in MS using a large, real‐world dataset. MethodsBrain age analysis is predicated on the over‐estimation of predicted brain age in patients with more advanced pathology. We compared the performance of three brain age algorithms in a large, longitudinal dataset (>13,000 imaging sessions from >6,000 individual MS patients). Effects of MS, MS disease course, disability, lesion burden, and DMT efficacy were assessed using linear mixed effects models. ResultsMS was associated with advanced predicted brain age cross‐sectionally and accelerated brain aging longitudinally in all techniques. While MS disease course (relapsing vs. progressive) did contribute to advanced brain age, disability was the primary correlate of advanced brain age. We found that advanced brain age at study enrollment predicted more disability accumulation longitudinally. Lastly, a more youthful appearing brain (predicted brain age less than actual age) was associated with decreased disability. InterpretationBrain age is a technically tractable and clinically relevant biomarker of disease pathology that correlates with and predicts increasing disability in MS. Advanced brain age predicts future disability accumulation.more » « less
-
null (Ed.)Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients’ quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases.more » « less
-
West, Brooke (Ed.)Objectives An Opioid Treatment Desert is an area with limited accessibility to medication-assisted treatment and recovery facilities for Opioid Use Disorder. We explored the concept of Opioid Treatment Deserts including racial differences in potential spatial accessibility and applied it to one Midwestern urban county using high resolution spatiotemporal data. Methods We obtained individual-level data from one Emergency Medical Services (EMS) agency (Columbus Fire Department) in Franklin County, Ohio. Opioid overdose events were based on EMS runs where naloxone was administered from 1/1/2013 to 12/31/2017. Potential spatial accessibility was measured as the time (in minutes) it would take an individual, who may decide to seek treatment after an opioid overdose, to travel from where they had the overdose event, which was a proxy measure of their residential location, to the nearest opioid use disorder (OUD) treatment provider that provided medically-assisted treatment (MAT). We estimated accessibility measures overall, by race and by four types of treatment providers (any type of MAT for OUD, Buprenorphine, Methadone, or Naltrexone). Areas were classified as an Opioid Treatment Desert if the estimate travel time to treatment provider (any type of MAT for OUD) was greater than a given threshold. We performed sensitivity analysis using a range of threshold values based on multiple modes of transportation (car and public transit) and using only EMS runs to home/residential location types. Results A total of 6,929 geocoded opioid overdose events based on data from EMS agencies were used in the final analysis. Most events occurred among 26–35 years old (34%), identified as White adults (56%) and male (62%). Median travel times and interquartile range (IQR) to closest treatment provider by car and public transit was 2 minutes (IQR: 3 minutes) and 17 minutes (IQR: 17 minutes), respectively. Several neighborhoods in the study area had limited accessibility to OUD treatment facilities and were classified as Opioid Treatment Deserts. Travel time by public transit for most treatment provider types and by car for Methadone-based treatment was significantly different between individuals who were identified as Black adults and White adults based on their race. Conclusions Disparities in access to opioid treatment exist at the sub-county level in specific neighborhoods and across racial groups in Columbus, Ohio and can be quantified and visualized using local public safety data (e.g., EMS runs). Identification of Opioid Treatment Deserts can aid multiple stakeholders better plan and allocate resources for more equitable access to MAT for OUD and, therefore, reduce the burden of the opioid epidemic while making better use of real-time public safety data to address a public health epidemic that has turned into a public safety crisis.more » « less
-
Abstract MicroRNA (miRNA), crucial non‐coding RNAs, have emerged as key biomarkers in molecular diagnostics, prognosis, and personalized medicine due to their significant role in gene expression regulation. Salivary miRNA, in particular, stands out for its non‐invasive collection method and ease of accessibility, offering promising avenues for the development of point‐of‐care diagnostics for a spectrum of diseases, including cancer, neurodegenerative disorders, and infectious diseases. Such development promises rapid and precise diagnosis, enabling timely treatment. Despite significant advancements in salivary miRNA‐based testing, challenges persist in the quantification, multiplexing, sensitivity, and specificity, particularly for miRNA at low concentrations in complex biological mixtures. This work delves into these challenges, focusing on the development and application of salivary miRNA tests for point‐of‐care use. We explore the biogenesis of salivary miRNA and analyze their quantitative expression and their disease relevance in cancer, infection, and neurodegenerative disorders. We also examined recent progress in miRNA extraction, amplification, and multiplexed detection methods. This study offers a comprehensive view of the development of salivary miRNA‐based point‐of‐care testing (POCT). Its successful advancement could revolutionize the early detection, monitoring, and management of various conditions, enhancing healthcare outcomes. This article is categorized under:Diagnostic Tools > BiosensingDiagnostic Tools > Diagnostic Nanodevicesmore » « less
An official website of the United States government
