skip to main content


Title: Gas exchange in streams and rivers
Abstract

Gas exchange across the air–water boundary of streams and rivers is a globally large biogeochemical flux. Gas exchange depends on the solubility of the gas of interest, the gas concentrations of the air and water, and the gas exchange velocity (k), usually normalized to a Schmidt number of 600, referred to ask600. Gas exchange velocity is of intense research interest because it is problematic to estimate, is highly spatially variable, and has high prediction error. Theory dictates that molecular diffusivity and turbulence drives variation ink600in flowing waters. We measurek600via several methods from direct measures, gas tracer experiments, to modeling of diel changes in dissolved gas concentrations. Many estimates ofk600show that surface turbulence explains variation ink600leading to predictive models based upon geomorphic and hydraulic variables. These variables include stream channel slope and stream flow velocity, the product of which, is proportional to the energy dissipation rate in streams and rivers. These empirical models provide understanding of the controls onk600, yet high residual variation ink600show that these simple models are insufficient for predicting individual locations. The most appropriate method to estimate gas exchange depends on the scientific question along with the characteristics of the study sites. We provide a decision tree for selecting the best method to estimatek600for individual river reaches to scaling to river networks.

This article is categorized under:

Water and Life > Nature of Freshwater Ecosystems

Science of Water > Water Quality

Water and Life > Methods

 
more » « less
NSF-PAR ID:
10360525
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Water
Volume:
7
Issue:
1
ISSN:
2049-1948
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Changes in climate are causing floods to occur more often and more intensely in many parts of the world, including agricultural landscapes of southern Wisconsin (U.S.A.). How flooding and greater flood frequency affect stream carbon dioxide (CO2) and methane (CH4) fluxes and concentrations is not obvious. Thus, we asked how diffusive fluxes of CO2and CH4varied over time, particularly in response to floods, in agricultural streams, and what were likely causes for observed flood responses.

    We measured concentrations and diffusive fluxes of CO2and CH4at 10 stream sites in mixed agricultural and suburban catchments in southern Wisconsin (U.S.A.) during the growing season (March–November) in a year that experienced multiple floods. Habitat, hydrologic, and water chemistry attributes were also quantified to determine likely drivers of changes in gas concentrations and fluxes.

    Habitat and water chemistry, as well as CO2and CH4concentrations and fluxes were temporally erratic and lacked any seasonality. Carbon dioxide and CH4concentrations and fluxes were higher during floods along with increased water velocity, turbidity, and dissolved organic carbon and decreases in dissolved oxygen, soft sediment depth, and macrophyte cover.

    Increased gas concentrations and fluxes were probably due to flushing of gases from soils, respiration of organic matter in the channel, and increased gas exchange velocities during floods.

    Flooding alleviated both supply and transfer limits on CO2and CH4emissions in these agricultural streams, and frequent and prolonged flooding during the growing season led to sustained high emissions from these streams. We hypothesise that such persistent increases in emissions during floods may be a common response to high precipitation periods for many agricultural streams.

     
    more » « less
  2. Abstract

    A widely examined predictive model of invertebrate community dynamics in glacial‐melt streams describes longitudinal changes in community structure with changing water temperature and channel stability with increasing distance from glaciers. Previous studies conducted in Europe, Greenland, New Zealand, and South America have supported the predictions of the invertebrate model and contributed to its refinement. However, none has evaluated if the model fits invertebrate community dynamics over a full range of distances from the glacier and water temperature conditions within glacial‐melt streams in southeast Tibet.

    We sampled invertebrates and measured water temperature, specific conductivity, turbidity, and associated glacier‐related variables within 14 sites in three subalpine glacial‐melt catchments in southeastern Tibet's Three Parallel Rivers region during 2010, 2011, 2013, and 2015. Our sites encompassed a temperature gradient from the upstream metakryal sites (maximum summer water temperature <2°C) to the furthest downstream site (maximum summer temperature >10°C) near the Mekong River.

    We evaluated the relationships of invertebrate community structure with in situ water temperature and channel stability which are the focal habitat variables in the invertebrate model. The additional habitat variables of distance from the glacier, glacier size, conductivity, and turbidity were evaluated to see if these were more important determinants of community structure than in situ water temperature and channel stability.

    Minimum and in situ water temperatures were positively correlated with distance from the glacier but Pfankuch Channel Stability Index bottom scores were not. Thus, the physical template within our study area differed from the expected template of the invertebrate model.

    Similar to the invertebrate model, in situ water temperature by itself or combined with Pfankuch index best explained five invertebrate response variables. In contrast with the invertebrate model, conductivity and turbidity best explained invertebrate taxa richness, density, and the site scores of the first and second detrended correspondence analysis axes of relative abundance.

    The invertebrate model predicts that only Diamesinae will occur in metakryal sites. However, in our metakryal sites we frequently captured 13 taxa (two Nemouridae morphotypes, Diamesinae, Orthocladiinae,Rhyacophila,Epeorus, Taeniopterygidae,Baetis,Capnia, Simuliidae, Limnephilidae,Himalopsyche, and Collembola).

    Invertebrate‐habitat relationships and taxa occurrence trends in glacial‐melt catchments in southeast Tibet differed from the invertebrate model predictions. Our findings highlight the need to develop a regional version of the invertebrate model applicable to Asian glacial‐melt streams with unstable stream channels throughout their catchments and that do not freeze in the winter.

     
    more » « less
  3. Methane and carbon dioxide effluxes from aquatic systems in the Arctic will affect and likely amplify global change. As permafrost thaws in a warming world, more dissolved organic carbon (DOC) and greenhouse gases are produced and move from soils to surface waters where the DOC can be oxidized to CO 2 and also released to the atmosphere. Our main study objective is to measure the release of carbon to the atmosphere via effluxes of methane (CH 4 ) and carbon dioxide (CO 2 ) from Toolik Lake, a deep, dimictic, low-arctic lake in northern Alaska. By combining direct eddy covariance flux measurements with continuous gas pressure measurements in the lake surface waters, we quantified the k 600 piston velocity that controls gas flux across the air–water interface. Our measured k values for CH 4 and CO 2 were substantially above predictions from several models at low to moderate wind speeds, and only converged on model predictions at the highest wind speeds. We attribute this higher flux at low wind speeds to effects on water-side turbulence resulting from how the surrounding tundra vegetation and topography increase atmospheric turbulence considerably in this lake, above the level observed over large ocean surfaces. We combine this process-level understanding of gas exchange with the trends of a climate-relevant long-term (30 + years) meteorological data set at Toolik Lake to examine short-term variations (2015 ice-free season) and interannual variability (2010–2015 ice-free seasons) of CH 4 and CO 2 fluxes. We argue that the biological processing of DOC substrate that becomes available for decomposition as the tundra soil warms is important for understanding future trends in aquatic gas fluxes, whereas the variability and long-term trends of the physical and meteorological variables primarily affect the timing of when higher or lower than average fluxes are observed. We see no evidence suggesting that a tipping point will be reached soon to change the status of the aquatic system from gas source to sink. We estimate that changes in CH 4 and CO 2 fluxes will be constrained with a range of +30% and −10% of their current values over the next 30 years. 
    more » « less
  4. Streams and rivers are significant sources of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) globally, and watershed management can alter greenhouse gas (GHG) emissions from streams. We hypothesized that urban infrastructure significantly alters downstream water quality and contributes to variability in GHG saturation and emissions. We measured gas saturation and estimated emission rates in headwaters of two urban stream networks (Red Run and Dead Run) of the Baltimore Ecosystem Study Long-Term Ecological Research project. We identified four combinations of stormwater and sanitary infrastructure present in these watersheds, including: (1) stream burial, (2) inline stormwater wetlands, (3) riparian/floodplain preservation, and (4) septic systems. We selected two first-order catchments in each of these categories and measured GHG concentrations, emissions, and dissolved inorganic and organic carbon (DIC and DOC) and nutrient concentrations biweekly for 1 year. From a water quality perspective, the DOC : NO3 ratio of streamwater was significantly different across infrastructure categories. Multiple linear regressions including DOC : NO3 and other variables (dissolved oxygen, DO; total dissolved nitrogen, TDN; and temperature) explained much of the statistical variation in nitrous oxide (N2O, r2 =  0.78), carbon dioxide (CO2, r2 =  0.78), and methane (CH4, r2 =  0.50) saturation in stream water. We measured N2O saturation ratios, which were among the highest reported in the literature for streams, ranging from 1.1 to 47 across all sites and dates. N2O saturation ratios were highest in streams draining watersheds with septic systems and strongly correlated with TDN. The CO2 saturation ratio was highly correlated with the N2O saturation ratio across all sites and dates, and the CO2 saturation ratio ranged from 1.1 to 73. CH4 was always supersaturated, with saturation ratios ranging from 3.0 to 2157. Longitudinal surveys extending form headwaters to third-order outlets of Red Run and Dead Run took place in spring and fall. Linear regressions of these data yielded significant negative relationships between each gas with increasing watershed size as well as consistent relationships between solutes (TDN or DOC, and DOC : TDN ratio) and gas saturation. Despite a decline in gas saturation between the headwaters and stream outlet, streams remained saturated with GHGs throughout the drainage network, suggesting that urban streams are continuous sources of CO2, CH4, and N2O. Our results suggest that infrastructure decisions can have significant effects on downstream water quality and greenhouse gases, and watershed management strategies may need to consider coupled impacts on urban water and air quality. 
    more » « less
  5. Abstract

    The gas exchange between water bodies and air is difficult to measure, thus the approximations of air–water gas exchange coefficient based solely on wind speed has been widely used. However, such approaches may not work well in river environments. In rivers, water currents may govern gas exchange. Thus, a new approximation for calculating the gas exchange coefficient (k) based on the near‐surface velocity scale (us) is suggested and compared to wind‐based estimates. Our velocity scale estimates are based on field observations during summer 2016 on the Yenisei River using an Acoustic Doppler Current Profiler, high‐frequency temperature profilers and a vessel‐mounted meteorological sensors‐suite. The results demonstrate thatus‐derived gas exchange coefficients are higher than those based solely on wind speed. The results demonstrate that the wind approximation underestimates gas exchange coefficients during low‐wind conditions.

     
    more » « less