skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Effects of long-term climate trends on the methane and CO2 exchange processes of Toolik Lake, Alaska
Methane and carbon dioxide effluxes from aquatic systems in the Arctic will affect and likely amplify global change. As permafrost thaws in a warming world, more dissolved organic carbon (DOC) and greenhouse gases are produced and move from soils to surface waters where the DOC can be oxidized to CO 2 and also released to the atmosphere. Our main study objective is to measure the release of carbon to the atmosphere via effluxes of methane (CH 4 ) and carbon dioxide (CO 2 ) from Toolik Lake, a deep, dimictic, low-arctic lake in northern Alaska. By combining direct eddy covariance flux measurements with continuous gas pressure measurements in the lake surface waters, we quantified the k 600 piston velocity that controls gas flux across the air–water interface. Our measured k values for CH 4 and CO 2 were substantially above predictions from several models at low to moderate wind speeds, and only converged on model predictions at the highest wind speeds. We attribute this higher flux at low wind speeds to effects on water-side turbulence resulting from how the surrounding tundra vegetation and topography increase atmospheric turbulence considerably in this lake, above the level observed over large ocean surfaces. We combine this process-level understanding of gas exchange with the trends of a climate-relevant long-term (30 + years) meteorological data set at Toolik Lake to examine short-term variations (2015 ice-free season) and interannual variability (2010–2015 ice-free seasons) of CH 4 and CO 2 fluxes. We argue that the biological processing of DOC substrate that becomes available for decomposition as the tundra soil warms is important for understanding future trends in aquatic gas fluxes, whereas the variability and long-term trends of the physical and meteorological variables primarily affect the timing of when higher or lower than average fluxes are observed. We see no evidence suggesting that a tipping point will be reached soon to change the status of the aquatic system from gas source to sink. We estimate that changes in CH 4 and CO 2 fluxes will be constrained with a range of +30% and −10% of their current values over the next 30 years.  more » « less
Award ID(s):
1637459 1936769 2220863
PAR ID:
10400133
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Environmental Science
Volume:
10
ISSN:
2296-665X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accelerated warming in the Arctic has led to concern regarding the amount of carbon emission potential from Arctic water bodies. Yet, aquatic carbon dioxide (CO 2 ) and methane (CH 4 ) flux measurements remain scarce, particularly at high resolution and over long periods of time. Effluxes of methane (CH 4 ) and carbon dioxide (CO 2 ) from Toolik Lake, a deep glacial lake in northern Alaska, were measured for the first time with the direct eddy covariance (EC) flux technique during six ice-free lake periods (2010–2015). CO 2 flux estimates from the lake (daily average efflux of 16.7 ± 5.3 mmol m −2 d −1 ) were in good agreement with earlier estimates from 1975–1989 using different methods. CH 4 effluxes in 2010–2015 (averaging 0.13 ± 0.06 mmol m −2 d −1 ) showed an interannual variation that was 4.1 times greater than median diel variations, but mean fluxes were almost one order of magnitude lower than earlier estimates obtained from single water samples in 1990 and 2011–2012. The overall global warming potential (GWP) of Toolik Lake is thus governed mostly by CO 2 effluxes, contributing 86–93% of the ice-free period GWP of 26–90 g CO 2,eq m −2 . Diel variation in fluxes was also important, with up to a 2-fold (CH 4 ) to 4-fold (CO 2 ) difference between the highest nighttime and lowest daytime effluxes. Within the summer ice-free period, on average, CH 4 fluxes increased 2-fold during the first half of the summer, then remained almost constant, whereas CO 2 effluxes remained almost constant over the entire summer, ending with a linear increase during the last 1–2 weeks of measurements. Due to the cold bottom temperatures of this 26 m deep lake, and the absence of ebullition and episodic flux events, Toolik Lake and other deep glacial lakes are likely not hot spots for greenhouse gas emissions, but they still contribute to the overall GWP of the Arctic. 
    more » « less
  2. Abstract Boreal‐Arctic regions are key stores of organic carbon (C) and play a major role in the greenhouse gas balance of high‐latitude ecosystems. The carbon‐climate (C‐climate) feedback potential of northern high‐latitude ecosystems remains poorly understood due to uncertainty in temperature and precipitation controls on carbon dioxide (CO2) uptake and the decomposition of soil C into CO2and methane (CH4) fluxes. While CH4fluxes account for a smaller component of the C balance, the climatic impact of CH4outweighs CO2(28–34 times larger global warming potential on a 100‐year scale), highlighting the need to jointly resolve the climatic sensitivities of both CO2and CH4. Here, we jointly constrain a terrestrial biosphere model with in situ CO2and CH4flux observations at seven eddy covariance sites using a data‐model integration approach to resolve the integrated environmental controls on land‐atmosphere CO2and CH4exchanges in Alaska. Based on the combined CO2and CH4flux responses to climate variables, we find that 1970‐present climate trends will induce positive C‐climate feedback at all tundra sites, and negative C‐climate feedback at the boreal and shrub fen sites. The positive C‐climate feedback at the tundra sites is predominantly driven by increased CH4emissions while the negative C‐climate feedback at the boreal site is predominantly driven by increased CO2uptake (80% from decreased heterotrophic respiration, and 20% from increased photosynthesis). Our study demonstrates the need for joint observational constraints on CO2and CH4biogeochemical processes—and their associated climatic sensitivities—for resolving the sign and magnitude of high‐latitude ecosystem C‐climate feedback in the coming decades. 
    more » « less
  3. Abstract Coastal salt marshes store large amounts of carbon but the magnitude and patterns of greenhouse gas (GHG; i.e., carbon dioxide (CO2) and methane (CH4)) fluxes are unclear. Information about GHG fluxes from these ecosystems comes from studies of sediments or at the ecosystem‐scale (eddy covariance) but fluxes from tidal creeks are unknown. We measured GHG concentrations in water, water quality, meteorological parameters, sediment CO2efflux, ecosystem‐scale GHG fluxes, and plant phenology; all at half‐hour intervals over 1 year. Manual creek GHG flux measurements were used to calculate gas transfer velocity (k) and parameterize a model of water‐to‐atmosphere GHG fluxes. The creek was a source of GHGs to the atmosphere where tidal patterns controlled diel variability. Dissolved oxygen and wind speed were negatively correlated with creek CH4efflux. Despite lacking a seasonal pattern, creek CO2efflux was correlated with drivers such as turbidity across phenological phases. Overall, nighttime creek CO2efflux (3.6 ± 0.63 μmol/m2/s) was at least 2 times higher than nighttime marsh sediment CO2efflux (1.5 ± 1.23 μmol/m2/s). Creek CH4efflux (17.5 ± 6.9 nmol/m2/s) was 4 times lower than ecosystem‐scale CH4fluxes (68.1 ± 52.3 nmol/m2/s) across the year. These results suggest that tidal creeks are potential hotspots for CO2emissions and could contribute to lateral transport of CH4to the coastal ocean due to supersaturation of CH4(>6,000 μmol/mol) in water. This study provides insights for modeling GHG efflux from tidal creeks and suggests that changes in tide stage overshadow water temperature in determining magnitudes of fluxes. 
    more » « less
  4. Abstract In limnological studies of temperate lakes, most studies of carbon dioxide (CO2) and methane (CH4) emissions have focused on summer measurements of gas fluxes despite the importance of shoulder seasons to annual emissions. This is especially pertinent to dimictic, small lakes that maintain anoxic conditions and turnover quickly in the spring and fall. We examined CO2and CH4dynamics from January to October 2020 in a small humic lake in northern Wisconsin, United States through a combination of discrete sampling and high frequency buoy and eddy covariance data collection. Eddy covariance flux towers were installed on buoys at the center of the lake while it was still frozen to continually measure CO2and CH4across seasons. Despite evidence for only partial turnover during the spring, there was still a notable 19‐day pulse of CH4emissions after lake ice melted with an average daytime flux rate of 8–30 nmol CH4m−2s−1. Our estimate of CH4emissions during the spring pulse was 16 mmol CH4m−2compared to 22 mmol CH4m−2during the stratified period from June to August. We did not observe a linear accumulation of gases under‐ice in our sampling period during the late winter, suggesting the complexity of this dynamic period and the emphasis for direct measurements throughout the ice‐covered period. The results of our study help to better understand the magnitude and timing of greenhouse gas emissions in a region expected to experience warmer winters with decreased ice duration. 
    more » « less
  5. Abstract Fluxes of carbon dioxide (CO2) and methane (CH4) from open water bodies are critical components of carbon‐climate feedbacks in high latitudes. Processes governing the spatial and temporal variability of these aquatic greenhouse gas (GHG) fluxes are still highly uncertain due to limited observational data sets and lack of modeling studies incorporating comprehensive thermal and biochemical processes. This research investigates how slight variations in climate propagate through the biogeochemical cycles of ponds and resulting impacts on GHG emissions. We examine the thermal and biogeochemical dynamics of two ponds in the Yukon–Kuskokwim Delta, Alaska, under varying climatic conditions to study the impacts on CO2, CH4, and oxygen (O2) concentrations and fluxes. We performed multiple numerical experiments, using the LAKE process‐based model and field measurements, to analyze how these ponds respond to variations in air temperature, shortwave radiation, and snow cover. Our study demonstrates that ice cover duration and water temperature are primary climatic drivers of GHG fluxes. Climate experiments led to reductions in ice cover duration and increased water temperatures, which subsequently enhanced CH4and CO2gas emissions from two study ponds. On average, cumulative CH4and CO2emissions were 5% and 10% higher, respectively, under increases in air temperature and shortwave radiation. Additionally, we uncovered a need to incorporate groundwater influxes of dissolved gases and nutrients in order to fully represent processes governing aquatic biochemical activity. Our work highlights the importance of understanding local‐scale processes in predicting future Arctic contributions to GHG emissions. 
    more » « less