skip to main content


Title: Impact of tumor-parenchyma biomechanics on liver metastatic progression: a multi-model approach
Abstract

Colorectal cancer and other cancers often metastasize to the liver in later stages of the disease, contributing significantly to patient death. While the biomechanical properties of the liver parenchyma (normal liver tissue) are known to affect tumor cell behavior in primary and metastatic tumors, the role of these properties in driving or inhibiting metastatic inception remains poorly understood, as are the longer-term multicellular dynamics. This study adopts a multi-model approach to study the dynamics of tumor-parenchyma biomechanical interactions during metastatic seeding and growth. We employ a detailed poroviscoelastic model of a liver lobule to study how micrometastases disrupt flow and pressure on short time scales. Results from short-time simulations in detailed single hepatic lobules motivate constitutive relations and biological hypotheses for a minimal agent-based model of metastatic growth in centimeter-scale tissue over months-long time scales. After a parameter space investigation, we find that the balance of basic tumor-parenchyma biomechanical interactions on shorter time scales (adhesion, repulsion, and elastic tissue deformation over minutes) and longer time scales (plastic tissue relaxation over hours) can explain a broad range of behaviors of micrometastases, without the need for complex molecular-scale signaling. These interactions may arrest the growth of micrometastases in a dormant state and prevent newly arriving cancer cells from establishing successful metastatic foci. Moreover, the simulations indicate ways in which dormant tumors could “reawaken” after changes in parenchymal tissue mechanical properties, as may arise during aging or following acute liver illness or injury. We conclude that the proposed modeling approach yields insight into the role of tumor-parenchyma biomechanics in promoting liver metastatic growth, and advances the longer term goal of identifying conditions to clinically arrest and reverse the course of late-stage cancer.

 
more » « less
Award ID(s):
1720625
NSF-PAR ID:
10360566
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oncolytic virus therapy is a cancer treatment modality that has the potential to improve outcomes for patients with currently incurable malignancies. Although intravascular delivery of therapeutic viruses provides access to disseminated tumors, this delivery route exposes the virus to opsonizing and inactivating factors in the blood, which limit the effective therapeutic virus dose and contribute to activation of systemic toxicities. When human species C adenovirus HAdv-C5 is delivered intravenously, natural immunoglobulin M (IgM) antibodies and coagulation factor X rapidly opsonize HAdv-C5, leading to virus sequestration in tissue macrophages and promoting infection of liver cells, triggering hepatotoxicity. Here, we showed that natural IgM antibody binds to the hypervariable region 1 (HVR1) of the main HAdv-C5 capsid protein hexon. Using compound targeted mutagenesis of hexon HVR1 loop and other functional sites that mediate virus-host interactions, we engineered and obtained a high-resolution cryo–electron microscopy structure of an adenovirus vector, Ad5-3M, which resisted inactivation by blood factors, avoided sequestration in liver macrophages, and failed to trigger hepatotoxicity after intravenous delivery. Systemic delivery of Ad5-3M to mice with localized or disseminated lung cancer led to viral replication in tumor cells, suppression of tumor growth, and prolonged survival. Thus, compound targeted mutagenesis of functional sites in the virus capsid represents a generalizable approach to tailor virus interactions with the humoral and cellular arms of the immune system, enabling generation of “designer” viruses with improved therapeutic properties.

     
    more » « less
  2. Age is a leading risk factor for developing breast cancer. This may be in part to the time required for acquiring sufficient cancer mutations; however, stromal cells that accumulate in tissues and undergo senescence eventually develop a senescence-associated secretory phenotype that alters the microenvironment to promote cancer. Our focus is on mesenchymal stem cells (MSCs) – stromal cells recruited to tumors due to their natural tropism for inflammatory tissues; MSCs have been shown to enhance the metastatic potential of tumor cells through direct interactions or paracrine signaling within the tumor. In the tumor, MSCs can differentiate into carcinoma-associated fibroblasts that play a central role in tumor growth and matrix remodeling. We recently investigated the molecular and mechanical differences in pre- and post- senescent MSCs and how their interactions with MDA-MB-231 breast cancer cells contribute to malignancy. Our data show post-senescent MSCs are larger and less motile, with more homogeneous mechanical properties than pre-senescent MSCs. In-depth omics analysis revealed differentially regulated genes and peptides including factors related to inflammatory cytokines, cell adhesion to the extracellular matrix, and cytoskeletal regulation. A 3D co-culture model was used to assess the effects of pre- and post- senescent MSCs on collagen matrix remodeling. Although post-senescent MSCs were far less motile than pre-senescent MSCs and less contractile with the matrix, they profoundly altered matrix protein deposition and crosslinking, which resulted in local matrix stiffening effects. Post-senescent MSCs also induced an invasive breast cancer cell phenotype, characterized by increased proliferation and invasion of breast cancer cells. This invasive breast cancer cell behavior was further amplified when MDA-MB-231 was co-cultured with a mixture of pre- and post- senescent MSCs; this result was attributed to matrix remodeling and soluble factor secretion effects of post-senescent MSCs, which enhanced the migration of pre-senescent MSCs allowing them to form tracks in the collagen network for cancer cells to follow. Finally, molecular inhibitors targeting actomyosin contractility and adhesion were used to alter MSC interactions with breast cancer cells. Actin depolymerizing agent and focal adhesion kinase inhibitor were most efficient and completely able to block the effects of post-senescent MSCs on MDA-MB-231 invasion in collagen gels. This comprehensive approach can be used to identify molecular pathways regulating heterotypic interactions of post-senescent MSCs with other cells in the tumor. Furthermore, the local matrix stiffening effect of post-senescent MSCs may play a critical role in breast cancer progression. 
    more » « less
  3. Abstract Myeloid-derived suppressor cells (MDSCs) play a prominent role in the tumor microenvironment. A quantitative understanding of the tumor–MDSC interactions that influence disease progression is critical, and currently lacking. We developed a mathematical model of metastatic growth and progression in immune-rich tumor microenvironments. We modeled the tumor–immune dynamics with stochastic delay differential equations and studied the impact of delays in MDSC activation/recruitment on tumor growth outcomes. In the lung environment, when the circulating level of MDSCs was low, the MDSC delay had a pronounced impact on the probability of new metastatic establishment: blocking MDSC recruitment could reduce the probability of metastasis by as much as 50%. To predict patient-specific MDSC responses we fit to the model individual tumors treated with immune checkpoint inhibitors via Bayesian parameter inference. We reveal that control of the inhibition rate of natural killer (NK) cells by MDSCs had a larger influence on tumor outcomes than controlling the tumor growth rate directly. Posterior classification of tumor outcomes demonstrates that incorporating knowledge of the MDSC responses improved predictive accuracy from 63% to 82%. Investigation of the MDSC dynamics in an environment low in NK cells and abundant in cytotoxic T cells revealed, in contrast, that small MDSC delays no longer impacted metastatic growth dynamics. Our results illustrate the importance of MDSC dynamics in the tumor microenvironment overall and predict interventions promoting shifts toward less immune-suppressed states. We propose that there is a pressing need to consider MDSCs more often in analyses of tumor microenvironments. 
    more » « less
  4. This study investigates the effects of a dual selective Class I histone deacetylase (HDAC)/lysine-specific histone demethylase 1A (LSD1) inhibitor known as 4SC-202 (Domatinostat) on tumor growth and metastasis in a highly metastatic murine model of Triple Negative Breast Cancer (TNBC). 4SC-202 is cytotoxic and cytostatic to the TNBC murine cell line 4T1 and the human TNBC cell line MDA-MB-231; the drug does not kill the normal breast epithelial cell line MCF10A. Furthermore, 4SC-202 reduces cancer cell migration. In vivo studies conducted in the syngeneic 4T1 model, which closely mimics human TNBC in terms of sites of metastasis, reveal reduced tumor burden and lung metastasis. The mechanism of action of 4SC-202 may involve effects on cancer stem cells (CSC) which can self-renew and form metastatic lesions. Approximately 5% of the total 4T1 cell population grown in three-dimensional scaffolds had a distinct CD44high/CD24low CSC profile which decreased after treatment. Bulk transcriptome (RNA) sequencing analyses of 4T1 tumors reveal changes in metastasis-related pathways in 4SC-202-treated tumors, including changes to expression levels of genes implicated in cell migration and cell motility. In summary, 4SC-202 treatment of tumors from a highly metastatic murine model of TNBC reduces metastasis and warrants further preclinical studies. 
    more » « less
  5. ABSTRACT  
    more » « less