Tumor heterogeneity makes cancer difficult to treat. Many small molecule cancer drugs target rapidly dividing cells on the periphery of tumors but have difficulty in penetrating deep into tumors and are ineffective at treating entire tumors. Targeting both rapidly dividing and slower growing regions of tumors is essential to effectively treat cancer. A cancer drug carrier that penetrates deep into tumors and identifies metabolically activity could supply treatment to those areas based on the local microenvironment. We hypothesized that glucose sensing bacteria could identify sugar gradients in solid tumors. To test this hypothesis, a genetic circuit was designed to trigger expression of a green fluorescent protein (GFP) reporter through the chemotaxis‐osmoporin fusion protein, Trz1, a receptor for sensing glucose and ribose sugars.
Colorectal cancer and other cancers often metastasize to the liver in later stages of the disease, contributing significantly to patient death. While the biomechanical properties of the liver parenchyma (normal liver tissue) are known to affect tumor cell behavior in primary and metastatic tumors, the role of these properties in driving or inhibiting metastatic inception remains poorly understood, as are the longer-term multicellular dynamics. This study adopts a multi-model approach to study the dynamics of tumor-parenchyma biomechanical interactions during metastatic seeding and growth. We employ a detailed poroviscoelastic model of a liver lobule to study how micrometastases disrupt flow and pressure on short time scales. Results from short-time simulations in detailed single hepatic lobules motivate constitutive relations and biological hypotheses for a minimal agent-based model of metastatic growth in centimeter-scale tissue over months-long time scales. After a parameter space investigation, we find that the balance of basic tumor-parenchyma biomechanical interactions on shorter time scales (adhesion, repulsion, and elastic tissue deformation over minutes) and longer time scales (plastic tissue relaxation over hours) can explain a broad range of behaviors of micrometastases, without the need for complex molecular-scale signaling. These interactions may arrest the growth of micrometastases in a dormant state and prevent newly arriving cancer cells from establishing successful metastatic foci. Moreover, the simulations indicate ways in which dormant tumors could “reawaken” after changes in parenchymal tissue mechanical properties, as may arise during aging or following acute liver illness or injury. We conclude that the proposed modeling approach yields insight into the role of tumor-parenchyma biomechanics in promoting liver metastatic growth, and advances the longer term goal of identifying conditions to clinically arrest and reverse the course of late-stage cancer.
more » « less- Award ID(s):
- 1720625
- NSF-PAR ID:
- 10360566
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT E. coli equipped with the Trz1‐GFP expression system, were administered to an in vitro model of a continuously perfused tumor tissue that mimics systemic delivery and clearance of bacteria through a blood vessel adjacent to a solid tumor. The level of GFP expressed, per bacterium, was time independent and indicated the glucose concentration as a function of penetration depth within the microfluidic tumors. The measured glucose concentration, correlated (P ‐value = 2.6 × 10−5) with tumor cell viability as a function of depth. Mathematical analysis predicted drug delivery by glucose‐sensing bacteria would eliminate a higher percentage of the viable tumor cell population than a systemically administered drug. Glucose‐sensing bacteria could deliver cancer therapies with increased drug penetration and nutrient‐dependent dosing to continuously treat viable regions of cancer tissue that have a higher prevalence for metastatic dissemination. Biotechnol. Bioeng. 2016;113: 2474–2484. © 2016 Wiley Periodicals, Inc. -
Abstract Background & Aims Cancer metastasis into distant organs is an evolutionarily selective process. A better understanding of the driving forces endowing proliferative plasticity of tumor seeds in distant soils is required to develop and adapt better treatment systems for this lethal stage of the disease. To this end, we aimed to utilize transcript expression profiling features to predict the site-specific metastases of primary tumors and second, to identify the determinants of tissue specific progression. Methods We used statistical machine learning for transcript feature selection to optimize classification and built tree-based classifiers to predict tissue specific sites of metastatic progression. Results We developed a novel machine learning architecture that analyzes 33 types of RNA transcriptome profiles from The Cancer Genome Atlas (TCGA) database. Our classifier identifies the tumor type, derives synthetic instances of primary tumors metastasizing to distant organs and classifies the site-specific metastases in 16 types of cancers metastasizing to 12 locations. Conclusions We have demonstrated that site specific metastatic progression is predictable using transcriptomic profiling data from primary tumors and that the overrepresented biological processes in tumors metastasizing to congruent distant loci are highly overlapping. These results indicate site-specific progression was organotropic and core features of biological signaling pathways are identifiable that may describe proliferative plasticity in distant soils.more » « less
-
This study investigates the effects of a dual selective Class I histone deacetylase (HDAC)/lysine-specific histone demethylase 1A (LSD1) inhibitor known as 4SC-202 (Domatinostat) on tumor growth and metastasis in a highly metastatic murine model of Triple Negative Breast Cancer (TNBC). 4SC-202 is cytotoxic and cytostatic to the TNBC murine cell line 4T1 and the human TNBC cell line MDA-MB-231; the drug does not kill the normal breast epithelial cell line MCF10A. Furthermore, 4SC-202 reduces cancer cell migration. In vivo studies conducted in the syngeneic 4T1 model, which closely mimics human TNBC in terms of sites of metastasis, reveal reduced tumor burden and lung metastasis. The mechanism of action of 4SC-202 may involve effects on cancer stem cells (CSC) which can self-renew and form metastatic lesions. Approximately 5% of the total 4T1 cell population grown in three-dimensional scaffolds had a distinct CD44high/CD24low CSC profile which decreased after treatment. Bulk transcriptome (RNA) sequencing analyses of 4T1 tumors reveal changes in metastasis-related pathways in 4SC-202-treated tumors, including changes to expression levels of genes implicated in cell migration and cell motility. In summary, 4SC-202 treatment of tumors from a highly metastatic murine model of TNBC reduces metastasis and warrants further preclinical studies.more » « less
-
Abstract Dormant, disseminated tumor cells (DTCs) can persist for decades in secondary tissues before being reactivated to form tumors. The properties of the premetastatic niche can influence the DTC phenotype. To better understand how matrix properties of premetastatic niches influence DTC behavior, three hydrogel formulations are implemented to model a permissive niche and two nonpermissive niches. Poly(ethylene glycol) (PEG)‐based hydrogels with varying adhesivity ([RGDS]) and degradability ([N‐vinyl pyrrolidinone]) are implemented to mimic a permissive niche with high adhesivity and degradability and two nonpermissive niches, one with moderate adhesivity and degradability and one with no adhesivity and high degradability. The influence of matrix properties on estrogen receptor positive (ER+) breast cancer cells (MCF7s) is determined via a multimetric analysis. MCF7s cultured in the permissive niche adopted a growth state, while those in the nonpermissive niche with reduced adhesivity and degradability underwent tumor mass dormancy. Complete removal of adhesivity while maintaining high degradability induced single cell dormancy. The ability to mimic reactivation of dormant cells through a dynamic increase in [RGDS] is also demonstrated. This platform provides the capability of inducing growth, dormancy, and reactivation of ER+ breast cancer and can be useful in understanding how premetastatic niche properties influence cancer cell fate.
-
Oncolytic virus therapy is a cancer treatment modality that has the potential to improve outcomes for patients with currently incurable malignancies. Although intravascular delivery of therapeutic viruses provides access to disseminated tumors, this delivery route exposes the virus to opsonizing and inactivating factors in the blood, which limit the effective therapeutic virus dose and contribute to activation of systemic toxicities. When human species C adenovirus HAdv-C5 is delivered intravenously, natural immunoglobulin M (IgM) antibodies and coagulation factor X rapidly opsonize HAdv-C5, leading to virus sequestration in tissue macrophages and promoting infection of liver cells, triggering hepatotoxicity. Here, we showed that natural IgM antibody binds to the hypervariable region 1 (HVR1) of the main HAdv-C5 capsid protein hexon. Using compound targeted mutagenesis of hexon HVR1 loop and other functional sites that mediate virus-host interactions, we engineered and obtained a high-resolution cryo–electron microscopy structure of an adenovirus vector, Ad5-3M, which resisted inactivation by blood factors, avoided sequestration in liver macrophages, and failed to trigger hepatotoxicity after intravenous delivery. Systemic delivery of Ad5-3M to mice with localized or disseminated lung cancer led to viral replication in tumor cells, suppression of tumor growth, and prolonged survival. Thus, compound targeted mutagenesis of functional sites in the virus capsid represents a generalizable approach to tailor virus interactions with the humoral and cellular arms of the immune system, enabling generation of “designer” viruses with improved therapeutic properties.