skip to main content


Title: Are we there yet? A machine learning architecture to predict organotropic metastases
Abstract Background & Aims Cancer metastasis into distant organs is an evolutionarily selective process. A better understanding of the driving forces endowing proliferative plasticity of tumor seeds in distant soils is required to develop and adapt better treatment systems for this lethal stage of the disease. To this end, we aimed to utilize transcript expression profiling features to predict the site-specific metastases of primary tumors and second, to identify the determinants of tissue specific progression. Methods We used statistical machine learning for transcript feature selection to optimize classification and built tree-based classifiers to predict tissue specific sites of metastatic progression. Results We developed a novel machine learning architecture that analyzes 33 types of RNA transcriptome profiles from The Cancer Genome Atlas (TCGA) database. Our classifier identifies the tumor type, derives synthetic instances of primary tumors metastasizing to distant organs and classifies the site-specific metastases in 16 types of cancers metastasizing to 12 locations. Conclusions We have demonstrated that site specific metastatic progression is predictable using transcriptomic profiling data from primary tumors and that the overrepresented biological processes in tumors metastasizing to congruent distant loci are highly overlapping. These results indicate site-specific progression was organotropic and core features of biological signaling pathways are identifiable that may describe proliferative plasticity in distant soils.  more » « less
Award ID(s):
1946937
NSF-PAR ID:
10303109
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
BMC Medical Genomics
Volume:
14
Issue:
1
ISSN:
1755-8794
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Breast cancer cells can metastasize either as single cells or as clusters to distant organs from the primary tumor site. Cell clusters have been shown to possess higher metastatic potential compared to single cells. The organ microenvironment is critical in regulating the ultimate phenotype, specifically, the dormant versus proliferative phenotypes, of these clusters. In the context of breast cancer brain metastasis (BCBM), tumor cell cluster–organ microenvironment interactions are not well understood, in part, due to the lack of suitable biomimetic in vitro models. To address this need, herein, we report a biomaterial-based model, utilizing hyaluronic acid (HA) hydrogels with varying stiffnesses to mimic the brain microenvironment. Cell spheroids were used to mimic cell clusters. Using 100–10 000 MDA-MB-231Br BCBM cells, six different sizes of cell spheroids were prepared to study the impact of cluster size on dormancy. On soft HA hydrogels (∼0.4 kPa), irrespective of spheroid size, all cell spheroids attained a dormant phenotype, whereas on stiff HA hydrogels (∼4.5 kPa), size dependent switch between the dormant and proliferative phenotypes was noted ( i.e. , proliferative phenotype ≥5000 cell clusters < dormant phenotype), as tested via EdU and Ki67 staining. Furthermore, we demonstrated that the matrix stiffness driven dormancy was reversible. Such biomaterial systems provide useful tools to probe cell cluster–matrix interactions in BCBM. 
    more » « less
  2. Tumor microenvironment is a complex niche consisting of cancer cells and stromal cells in a network of extracellular matrix proteins and various soluble factors. Dynamic interactions among cellular and non-cellular components of the tumor microenvironment regulate tumor initiation and progression. Fibroblasts are the most abundant stromal cell type and dynamically interact with cancer cells both in primary tumors and in metastases. Cancer cells activate resident fibroblasts to produce and secrete soluble signaling molecules that support proliferation, migration, matrix invasion, and drug resistance of cancer cell and tumor angiogenesis. In recent years, various forms of three-dimensional tumor models have been developed to study tumor–stromal interactions and to identify anti-cancer drugs that block these interactions. There is currently a technological gap in development of tumor models that are physiologically relevant, scalable, and allow convenient, on-demand addition of desired components of the tumor microenvironment. In this review, we discuss three studies from our group that focus on developing bioengineered models to study tumor-stromal signaling. We will present these studies chronologically and based on their increasing complexity. We will discuss the validation of the models using a CXCL12-CXCR4 chemokine-receptor signaling present among activated fibroblasts and breast cancer cells in solid tumors, highlight the advantages and shortcomings of the models, and conclude with our perspectives on their applications. Impact statement Tumor stroma plays an important role in progression of cancers to a fatal metastatic disease. Modern treatment strategies are considering targeting tumor stroma to improve outcomes for cancer patients. A current challenge to develop stroma-targeting therapeutics is the lack of preclinical physiologic tumor models. Animal models widely used in cancer research lack human stroma and are not amenable to screening of chemical compounds for cancer drug discovery. In this review, we outline in vitro three-dimensional tumor models that we have developed to study the interactions among cancer cells and stromal cells. We describe development of the tumor models in a modular fashion, from a spheroid model to a sophisticated organotypic model, and discuss the importance of using correct physiologic models to recapitulate tumor-stromal signaling. These biomimetic tumor models will facilitate understanding of tumor-stromal signaling biology and provide a scalable approach for testing and discovery of cancer drugs. 
    more » « less
  3. Abstract

    Cancer‐associated fibroblasts (CAFs) are present in many types of tumors and play a pivotal role in tumor progression and immunosuppression. Fibroblast‐activation protein (FAP), which is overexpressed on CAFs, has been indicated as a universal tumor target. However, FAP expression is not restricted to tumors, and systemic treatment against FAP often causes severe side effects. To solve this problem, a photodynamic therapy (PDT) approach is developed based on ZnF16Pc‐loaded and FAP‐specific single chain variable fragment (scFv)‐conjugated apoferritin nanoparticles, or αFAP‐Z@FRT. αFAP‐Z@FRT PDT efficiently eradicates CAFs in tumors without inducing systemic toxicity. When tested in murine 4T1 models, the treatment elicits anti‐cancer immunity, causing suppression of both primary and distant tumors, that is, the abscopal effect. Treatment efficacy is enhanced when αFAP‐Z@FRT PDT is used in combination with anti‐PD1 antibodies. Interestingly, it is found that the PDT treatment not only elicits a cellular immunity against cancer cells, but also stimulates an anti‐CAFs immunity. This is supported by an adoptive cell transfer study, where T cells taken from 4T1‐tumor‐bearing animals treated with αFAP PDT retard the growth of A549 tumors established on nude mice. Overall, this approach is unique for permitting site‐specific eradication of CAFs and inducing a broad spectrum anti‐cancer immunity.

     
    more » « less
  4. Modeling metastasis in vivo with animals is a priority for both revealing mechanisms of tumor dissemination and developing therapeutic methods. While conventional intravenous injection of tumor cells provides an efficient and consistent system for studying tumor cell extravasation and colonization, studying spontaneous metastasis derived from orthotopic tumor sites has the advantage of modeling more aspects of the metastatic cascade, but is challenging as it is difficult to detect small numbers of metastatic cells. In this work, we developed an approach for quantifying spontaneous metastasis in the syngeneic mouse B16 system using real time PCR. We first transduced B16 cells with lentivirus expressing firefly luciferase Luc2 gene for bioluminescence imaging. Next, we developed a real time quantitative PCR (qPCR) method for the detection of luciferase-expressing, metastatic tumor cells in mouse lungs and other organs. To illustrate the approach, we quantified lung metastasis in both spontaneous and experimental scenarios using B16F0 and B16F10 cells in C57BL/6Ncrl and NOD-Scid Gamma (NSG) mice. We tracked B16 melanoma metastasis with both bioluminescence imaging and qPCR, which were found to be self-consistent. Using this assay, we can quantitatively detect one Luc2 positive tumor cell out of 10 4 tissue cells, which corresponds to a metastatic burden of 1.8 × 10 4 metastatic cells per whole mouse lung. More importantly, the qPCR method was at least a factor of 10 more sensitive in detecting metastatic cell dissemination and should be combined with bioluminescence imaging as a high-resolution, end-point method for final metastatic cell quantitation. Given the rapid growth of primary tumors in many mouse models, assays with improved sensitivity can provide better insight into biological mechanisms that underpin tumor metastasis. 
    more » « less
  5. The cancer stem cell hypothesis has been used to explain many cancer complications resulting in poor patient outcomes including induced drug resistance, metastases to distant organs, and tumor recurrence. While the validity of the cancer stem cell model continues to be the cause of much scientific debate, a number of putative cancer stem cell markers have been identified making studies concerning the targeting of cancer stem cells possible. In this review, a number of identifying properties of cancer stem cells have been outlined including properties contributing to the drug resistance and metastatic potential commonly observed in supposed cancer stem cells. Due to cancer stem cells' numerous survival mechanisms, the diversity of cancer stem cell markers between cancer types and tissues, and the prevalence of cancer stem cell markers among healthy stem and somatic cells, it is likely that currently utilized treatments will continue to fail to eradicate cancer stem cells. The successful treatment of cancer stem cells will rely upon the development of anti-neoplastic drugs capable of influencing many cellular mechanisms simultaneously in order to prevent the survival of this evasive subpopulation. Natural compounds represent a historically rich source of novel, biologically active compounds which are able to interact with a large number of cellular targets while limiting the painful side-effects commonly associated with cancer treatment. A brief review of select natural products that have been demonstrated to diminish the clinically devastating properties of cancer stem cells or to induce cancer stem cell death is also presented. 
    more » « less