skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Perennial grass bioenergy cropping systems: Impacts on soil fauna and implications for soil carbon accrual
ABSTRACT Perennial grass energy crop production is necessary for the successful and sustainable expansion of bioenergy in North America. Numerous environmental advantages are associated with perennial grass cropping systems, including their potential to promote soil carbon accrual. Despite growing research interest in the abiotic and biotic factors driving soil carbon cycling within perennial grass cropping systems, soil fauna remain a critical yet largely unexplored component of these ecosystems. By regulating microbial activity and organic matter decomposition dynamics, soil fauna influence soil carbon stability with potentially significant implications for soil carbon accrual. We begin by reviewing the diverse, predominantly indirect effects of soil fauna on soil carbon dynamics in the context of perennial grass cropping systems. Since the impacts of perennial grass energy crop production on soil fauna will mediate their potential contributions to soil carbon accrual, we then discuss how perennial grass energy crop traits, diversity, and management influence soil fauna community structure and activity. We assert that continued research into the interactions of soil fauna, microbes, and organic matter will be important for advancing our understanding of soil carbon dynamics in perennial grass cropping systems. Furthermore, explicit consideration of soil faunal effects on soil carbon can improve our ability to predict changes in soil carbon following perennial grass cropping system establishment. We conclude by addressing the major knowledge gaps that should be prioritized to better understand and model the complex connections between perennial grass bioenergy systems, soil fauna, and carbon accrual.  more » « less
Award ID(s):
1832042
PAR ID:
10360584
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
GCB Bioenergy
Volume:
14
Issue:
1
ISSN:
1757-1693
Page Range / eLocation ID:
p. 4-23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Agriculture is driving biodiversity loss, and future bioenergy cropping systems have the potential to ameliorate or exacerbate these effects. Using a long-term experimental array of 10 bioenergy cropping systems, we quantified diversity of plants, invertebrates, vertebrates, and microbes in each crop. For many taxonomic groups, alternative annual cropping systems provided no biodiversity benefits when compared to corn (the business-as-usual bioenergy crop in the United States), and simple perennial grass–based systems provided only modest gains. In contrast, for most animal groups, richness in plant-diverse perennial systems was much higher than in annual crops or simple perennial systems. Microbial richness patterns were more eclectic, although some groups responded positively to plant diversity. Future agricultural landscapes incorporating plant-diverse perennial bioenergy cropping systems could be of high conservation value. However, increased use of annual crops will continue to have negative effects, and simple perennial grass systems may provide little improvement over annual crops. 
    more » « less
  2. The mandate by the Energy Independence and Security Act of 2007 to increase renewable fuel production in the USA has resulted in extensive research into the sustainability of perennial bioenergy crops such as switchgrass (Panicum virgatum) and miscanthus (Miscanthus× giganteus). Perennial grassland crops have been shown to support greater aboveground biodiversity and ecosystem function than annual crops. However, management considerations, such as what crop to plant or whether to use fertilizer, may alter belowground diversity and ecosystem functioning associated with these grasslands as well. In this study, we compared crop type (switchgrass or miscanthus) and nitrogen fertilization effects on arbuscular mycorrhizal fungal (AMF) and soil nematode abundance, activity, and diversity in a long-term experiment. We quantified AMF root colonization, AMF extra-radical hyphal length, soil glomalin concentrations, AMF richness and diversity, plant-parasitic nematode abundance, and nematode family richness and diversity in each treatment. Mycorrhizal activity and diversity were higher with switchgrass than with miscanthus, leading to higher potential soil carbon contributions via increased hyphal growth and glomalin production. Plant-parasitic nematode (PPN) abundance was 2.3 ×  higher in miscanthus plots compared to switchgrass, mostly due to increases in dagger nematodes (Xiphinema). The higher PPN abundance in miscanthus may be a consequence of lower AMF in this species, as AMF can provide protection against PPN through a variety of mechanisms. Nitrogen fertilization had minor negative effects on AMF and nematode diversity associated with these crops. Overall, we found that crop type and fertilizer application associated with perennial bioenergy cropping systems can have detectable effects on the diversity and composition of soil communities, which may have important consequences for the ecosystem services provided by these systems. 
    more » « less
  3. Abstract Most soil carbon (C) is in the form of soil organic matter (SOM), the composition of which is controlled by the plant–microbe–soil continuum. The extent to which plant and microbial inputs contribute to persistent SOM has been linked to edaphic properties such as mineralogy and aggregation. However, it is unknown how variation in plant inputs, microbial community structure, and soil physical and chemical attributes interact to influence the chemical classes that comprise SOM pools. We used two long‐term biofuel feedstock field experiments to test the influence of cropping systems (corn and switchgrass) and soil characteristics (sandy and silty loams) on microbial selection and SOM chemistry. Cropping system had a strong influence on water‐extractable organic C chemistry with perennial switchgrass generally having a higher chemical richness than the annual corn cropping system. Nonetheless, cropping system was a less influential driver of soil microbial community structure and overall C chemistry than soil type. Soil type was especially influential on fungal community structure and the chemical composition of the chloroform‐extractable C. Although plant inputs strongly influence the substrates available for decomposition and SOM formation, total C and nitrogen (N) did not differ between cropping systems within either site. We conclude this is likely due to enhanced microbial activity under the perennial cropping system. Silty soils also had a higher activity of phosphate and C liberating enzymes. After 8 years, silty loams still contained twice the total C and N as sandy loams, with no significant response to biofuel cropping system inputs. Together, these results demonstrate that initial site selection is critical to plant–microbe interactions and substantially impacts the potential for long‐term C accrual in soils under biofuel feedstock production. 
    more » « less
  4. ABSTRACT Switchgrass (Panicum virgatumL.) is a native North American grass currently considered a high‐potential bioenergy feedstock crop. However, previous reports questioned its effectiveness in generating soil organic carbon (SOC) gains, with resultant uncertainty regarding the monoculture switchgrass's impact on the environmental sustainability of bioenergy agriculture. We hypothesize that the inconsistencies in past SOC accrual results might be due, in part, to differences in prior land management among the systems subsequently planted to switchgrass. To test this hypothesis, we measured SOC and other soil properties, root biomass, and switchgrass growth in an experimental site with a 30‐year history of contrasting tillage and N‐fertilization treatments, 7 years after switchgrass establishment. We determined switchgrass' monthly gross primary production (GPP) for six consecutive years and conducted deep soil sampling. Nitrogen fertilization expectedly stimulated switchgrass growth; however, a tendency for better plant growth was also observed under unfertilized settings in the former no‐till soil. In topsoil, SOC significantly increased from 2007 to 2023 in fertilized treatments of both tillage histories, with the greatest increase observed in fertilized no‐till. Fertilized no‐till also had the highest particulate organic matter content in the topsoil, with no differences among the treatments observed in deeper soil layers. However, regardless of fertilization, the tillage history had a strong effect on stratification with depth of SOC, total N, and microbial biomass C. Results suggested that historic and ongoing N fertilization had a substantial impact on switchgrass growth and soil characteristics, while tillage legacy had a much weaker, but still discernible, effect. 
    more » « less
  5. null (Ed.)
    A continuously growing pressure to increase food, fiber, and fuel production to meet worldwide demand and achieve zero hunger has put severe pressure on soil resources. Abandoned, degraded, and marginal lands with significant agricultural constraints—many still used for agricultural production—result from inappropriately intensive management, insufficient attention to soil conservation, and climate change. Continued use for agricultural production will often require ever more external inputs such as fertilizers and herbicides, further exacerbating soil degradation and impeding nutrient recycling and retention. Growing evidence suggests that degraded lands have a large potential for restoration, perhaps most effectively via perennial cropping systems that can simultaneously provide additional ecosystem services. Here we synthesize the advantages of and potentials for using perennial vegetation to restore soil fertility on degraded croplands, by summarizing the principal mechanisms underpinning soil carbon stabilization and nitrogen and phosphorus availability and retention. We illustrate restoration potentials with example systems that deliver climate mitigation (cellulosic bioenergy), animal production (intensive rotational grazing), and biodiversity conservation (natural ecological succession). Perennialization has substantial promise for restoring fertility to degraded croplands, helping to meet future food security needs. 
    more » « less