Abstract Nitrogen (N) fertilization significantly affects soil extracellular oxidases, agents responsible for decomposition of slow turnover and recalcitrant soil organic carbon (SOC; e.g., lignin), and consequently influences soil carbon sequestration capacity. However, it remains unclear how soil oxidases mediate SOC sequestration under N fertilization, and whether these effects co‐vary with plant type (e.g., bioenergy crop species). Using a spatially explicit design and intensive soil sampling strategy under three fertilization treatments in switchgrass (SG:Panicum virgatumL.) and gamagrass (GG:Tripsacum dactyloidesL.) croplands, we quantified the activities of polyphenolic oxidase (PHO), peroxidase (PER), and their sum associated with recalcitrant C acquisition (OX). The fertilization treatments included no N fertilizer input (NN), low N input (LN: 84 kg N ha−1 year−1in urea), and high N input (HN: 168 kg N ha−1 year−1in urea). Besides correlations between soil oxidases and SOC (formerly published), both descriptive and geostatistical approaches were applied to evaluate the effects of N fertilization and crop type on soil oxidases activities and their spatial distributions. Results showed significantly negative correlations between soil oxidase activities and SOC across all treatments. The negative relationship of soil oxidases and SOC was also evident under N fertilization. First, LN significantly depressed oxidases in both mean activities and spatial heterogeneity, which corresponded to increased SOC in SG (though by 5.4%). LN slightly influenced oxidases activities and their spatial heterogeneity, consistent with insignificant changes of SOC in GG. Second, HN showed trends of decrease in soil oxidase activities, which aligned with the significantly enhanced SOC in both croplands. Overall, this study demonstrated that soil oxidase activities acted as sensitive and negative mediators of SOC sequestration in bioenergy croplands and optimizing fertilizer use particularly in switchgrass cropland can improve for both carbon sequestration and environmental benefit.
more »
« less
This content will become publicly available on July 1, 2026
Agricultural Management Legacy Effects on Switchgrass Growth and Soil Carbon Gains
ABSTRACT Switchgrass (Panicum virgatumL.) is a native North American grass currently considered a high‐potential bioenergy feedstock crop. However, previous reports questioned its effectiveness in generating soil organic carbon (SOC) gains, with resultant uncertainty regarding the monoculture switchgrass's impact on the environmental sustainability of bioenergy agriculture. We hypothesize that the inconsistencies in past SOC accrual results might be due, in part, to differences in prior land management among the systems subsequently planted to switchgrass. To test this hypothesis, we measured SOC and other soil properties, root biomass, and switchgrass growth in an experimental site with a 30‐year history of contrasting tillage and N‐fertilization treatments, 7 years after switchgrass establishment. We determined switchgrass' monthly gross primary production (GPP) for six consecutive years and conducted deep soil sampling. Nitrogen fertilization expectedly stimulated switchgrass growth; however, a tendency for better plant growth was also observed under unfertilized settings in the former no‐till soil. In topsoil, SOC significantly increased from 2007 to 2023 in fertilized treatments of both tillage histories, with the greatest increase observed in fertilized no‐till. Fertilized no‐till also had the highest particulate organic matter content in the topsoil, with no differences among the treatments observed in deeper soil layers. However, regardless of fertilization, the tillage history had a strong effect on stratification with depth of SOC, total N, and microbial biomass C. Results suggested that historic and ongoing N fertilization had a substantial impact on switchgrass growth and soil characteristics, while tillage legacy had a much weaker, but still discernible, effect.
more »
« less
- Award ID(s):
- 2224712
- PAR ID:
- 10613630
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- GCB Bioenergy
- Volume:
- 17
- Issue:
- 7
- ISSN:
- 1757-1693
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Without fertilization, harvest of perennial bioenergy cropping systems diminishes soil nutrient stocks, yet the time course of nutrient drawdown has not often been investigated. We analyzed phosphorus (P) inputs (fertilization and atmospheric deposition) and outputs (harvest and leaching losses) over seven years in three representative biomass crops—switchgrass (Panicum virgatum L.), miscanthus (Miscanthus X giganteus) and hybrid poplar trees (Populus nigra X P. maximowiczii) – as well as in no-till corn (maize; Zea mays L.) for comparison, all planted on former cropland in SW Michigan, USA. Only corn received P fertilizer. Corn (grain and stover), switchgrass, and miscanthus were harvested annually, while poplar was harvested after six years. Soil test P (STP; Bray-1 method) was measured in the upper 25 cm of soil annually. Harvest P removal was calculated from tissue P concentration and harvest yield (or annual woody biomass accrual in poplar). Leaching was estimated as total dissolved P concentration in soil solutions sampled beneath the rooting depth (1.25 m), combined with hydrological modeling. Fertilization and harvest were by far the dominant P budget terms for corn, and harvest P removal dominated the P budgets in switchgrass, miscanthus, and poplar, while atmospheric deposition and leaching losses were comparatively insignificant. Because of significant P removal by harvest, the P balances of switchgrass, miscanthus, and poplar were negative and corresponded with decreasing STP, whereas P fertilization compensated for the harvest P removal in corn, resulting in a positive P balance. Results indicate that perennial crop harvest without P fertilization removed legacy P from soils, and continued harvest will soon draw P down to limiting levels, even in soils once heavily P-fertilized. Widespread cultivation of bioenergy crops may therefore alter P balances in agricultural landscapes, eventually requiring P fertilization, which could be supplied by P recovery from harvested biomass.more » « less
-
Abstract Cellulosic bioenergy is a primary land‐based climate mitigation strategy, with soil carbon (C) storage and nitrogen (N) conservation as important mitigation elements. Here, we present 13 years of soil C and N change under three cellulosic cropping systems: monoculture switchgrass (Panicum virgatumL.), a five native grasses polyculture, and no‐till corn (Zea maysL.). Soil C and N fractions were measured four times over 12 years. Bulk soil C in the 0–25 cm depth at the end of the study period ranged from 28.4 (± 1.4 se) Mg C ha−1in no‐till corn, to 30.8 (± 1.4) Mg C ha−1in switchgrass, and to 34.8 (± 1.4) Mg C ha−1in native grasses. Mineral‐associated organic matter (MAOM) ranged from 60% to 90% and particulate organic matter (POM) from 10% to 40% of total soil C. Over 12 years, total C as well as both C fractions persisted under no‐till corn and switchgrass and increased under native grasses. In contrast, POM N stocks decreased 33% to 45% across systems, whereas MAOM N decreased only in no‐till corn and by less than 13%. Declining POM N stocks likely reflect pre‐establishment land use, which included alfalfa and manure in earlier rotations. Root production and large soil aggregate formation explained 69% (p < 0.001) and 36% (p = 0.024) of total soil C change, respectively, and 60% (p = 0.020) and 41% (p = 0.023) of soil N change, demonstrating the importance of belowground productivity and soil aggregates for producing and protecting soil C and conserving soil N. Differences between switchgrass and native grasses also indicate a dependence on plant diversity. Soil C and N benefits of bioenergy crops depend strongly on root productivity and pre‐establishment land use.more » « less
-
Cellulosic bioenergy is a primary land-based climate mitigation strategy, with soil carbon (C) storage and nitrogen (N) conservation as important mitigation elements. Here, we present 13 years of soil C and N change under three cellulosic cropping systems: monoculture switchgrass (Panicum virgatum L.), a five native grasses polyculture, and no-till corn (Zea mays L.). Soil C and N fractions were measured four times over 12 years. Bulk soil C in the 0–25 cm depth at the end of the study period ranged from 28.4 (± 1.4 se) Mg C ha−1 in no-till corn, to 30.8 (± 1.4) Mg C ha−1 in switchgrass, and to 34.8 (± 1.4) Mg C ha−1 in native grasses. Mineral-associated organic matter (MAOM) ranged from 60% to 90% and particulate organic matter (POM) from 10% to 40% of total soil C. Over 12 years, total C as well as both C fractions persisted under no-till corn and switchgrass and increased under native grasses. In contrast, POM N stocks decreased 33% to 45% across systems, whereas MAOM N decreased by less than 13% and only in no-till corn. Declining POM N stocks likely reflect pre-establishment land use, which included alfalfa and manure in earlier rotations. Root production and large soil aggregate formation explained 69% (p < 0.001) and 36% (p = 0.024) of total soil C change, respectively, and 60% (p = 0.020) and 41% (p = 0.023) of soil N change, demonstrating the importance of belowground productivity and soil aggregates for producing and protecting soil C and conserving soil N. Differences between switchgrass and native grasses also indicate a dependence on plant diversity. Soil C and N benefits of bioenergy crops depend strongly on root productivity and pre-establishment land use. See the Materials and Methods of the associated publication for procedures on sampling and processing, and section 2.9 Statistical analysis for statistical models. The R software was used for all analyses (R Core Team, 2014); the R scripts are provided in the file Statistical_Analysis.R. R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.Rproject.org/more » « less
-
null (Ed.)Abstract Extracellular glycosidases in soil, produced by microorganisms, act as major agents for decomposing labile soil organic carbon (e.g., cellulose). Soil extracellular glycosidases are significantly affected by nitrogen (N) fertilization but fertilization effects on spatial distributions of soil glycosidases have not been well addressed. Whether the effects of N fertilization vary with bioenergy crop species also remains unclear. Based on a 3-year fertilization experiment in Middle Tennessee, USA, a total of 288 soil samples in topsoil (0–15 cm) were collected from two 15 m 2 plots under three fertilization treatments in switchgrass (SG: Panicum virgatum L.) and gamagrass (GG: Tripsacum dactyloides L.) using a spatially explicit design. Four glycosidases, α-glucosidase ( AG ), β-glucosidase ( BG ), β-xylosidase ( BX ), cellobiohydrolase ( CBH ), and their sum associated with C acquisition ( C acq ) were quantified. The three fertilization treatments were no N input (NN), low N input (LN: 84 kg N ha −1 year −1 in urea) and high N input (HN: 168 kg N ha −1 year −1 in urea). The descriptive and geostatistical approaches were used to evaluate their central tendency and spatial heterogeneity. Results showed significant interactive effects of N fertilization and crop type on BX such that LN and HN significantly enhanced BX by 14% and 44% in SG, respectively. The significant effect of crop type was identified and glycosidase activities were 15–39% higher in GG than those in SG except AG . Within-plot variances of glycosidases appeared higher in SG than GG but little differed with N fertilization due to large plot-plot variation. Spatial patterns were generally more evident in LN or HN plots than NN plots for BG in SG and CBH in GG. This study suggested that N fertilization elevated central tendency and spatial heterogeneity of glycosidase activities in surficial soil horizons and these effects however varied with crop and enzyme types. Future studies need to focus on specific enzyme in certain bioenergy cropland soil when N fertilization effect is evaluated.more » « less
An official website of the United States government
