skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How to Look for Compounds: Predictive Screening and in situ Studies in Na−Zn−Bi System
Abstract Here, the combination of theoretical computations followed by rapid experimental screening and in situ diffraction studies is demonstrated as a powerful strategy for novel compounds discovery. When applied for the previously “empty” Na−Zn−Bi system, such an approach led to four novel phases. The compositional space of this system was rapidly screened via the hydride route method and the theoretically predicted NaZnBi (PbClF type,P4/nmm) and Na11Zn2Bi5(Na11Cd2Sb5type,P) phases were successfully synthesized, while other computationally generated compounds on the list were rejected. In addition, single crystal X‐ray diffraction studies of NaZnBi indicate minor deviations from the stoichiometric 1 : 1 : 1 molar ratio. As a result, two isostructural (PbClF type,P4/nmm) Zn‐deficient phases with similar compositions, but distinctly different unit cell parameters were discovered. The vacancies on Zn sites and unit cell expansion were rationalized from bonding analysis using electronic structure calculations on stoichiometric “NaZnBi”.In‐situsynchrotron powder X‐ray diffraction studies shed light on complex equilibria in the Na−Zn−Bi system at elevated temperatures. In particular, the high‐temperature polymorphHT‐Na3Bi (BiF3type,Fmm) was obtained as a product of Na11Zn2Bi5decomposition above 611 K.HT‐Na3Bi cannot be stabilized at room temperature by quenching, and this type of structure was earlier observed in the high‐pressure polymorphHP‐Na3Bi above 0.5 GPa. The aforementioned approach of predictive synthesis can be extended to other multinary systems.  more » « less
Award ID(s):
1944551
PAR ID:
10360634
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
27
Issue:
64
ISSN:
0947-6539
Page Range / eLocation ID:
p. 15954-15966
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report the pulsed‐laser deposition of epitaxial double‐perovskite Bi2FeCrO6(BFCO) films on the (001)‐, (110), and (111)‐oriented single‐crystal SrTiO3substrates. All of the BFCO films with various orientations show theandsuperlattice‐diffraction peaks. The intensity ratios between the‐superlattice and the main 111‐diffraction peak can be tailored by simply adjusting the laser repetition rate and substrate temperature, reaching up to 4.4%. However, both optical absorption spectra and magnetic measurements evidence that the strong superlattice peaks are not correlated with theB‐site Fe3+/Cr3+cation ordering. Instead, the epitaxial (111)‐oriented Bi2FeCrO6films show an enhanced remanent polarization of 92 μC/cm2at 10 K, much larger than the predicted values by density‐functional theory calculations. Positive‐up‐negative‐down (PUND) measurements with a time interval of 10 μs further support these observations. Therefore, our experimental results reveal that the strong superlattice peaks may come fromA‐ orB‐site cation shifts along the pseudo‐cubic [111] direction, which further enhance the ferroelectric polarization of the BFCO thin films. 
    more » « less
  2. Abstract The hydration of the two most reactive phases of ordinary Portland cement (OPC), tricalcium silicate (C3S), and tricalcium aluminate (C3A) is successfully halted when the activity of water () falls below critical thresholds of 0.70 and 0.45, respectively. It has been established that the reduction in relative humidity (RH) and suppresses the hydration of all anhydrous phases in OPC, including less explored phases like dicalcium silicate, that is, belite (β‐C2S). However, the degree of suppression, that is, the critical threshold, for β‐C2S, standalone has yet to be established. This study utilizes isothermal microcalorimetry and X‐ray diffraction techniques to elucidate the influence ofon the hydration of‐C2S suspensions via incremental replacements of water with isopropanol (IPA). Experimentally, this study shows that with increasing IPA replacements, hydration is increasingly suppressed until eventually brought to a halt at a critical threshold of approximately 27.7% IPA on a weight basis (wt.%IPA). From thermodynamic estimations, the exact criticalthreshold and solubility product constant of‐C2S () are established as 0.913 and 10−12.68, respectively. This study enables enhanced understanding of β‐C2S reactivity and provides thermodynamic parameters during the hydration of β‐C2S‐containing cementitious systems such as OPC‐based and calcium aluminate‐based systems. 
    more » « less
  3. Abstract Serendipitous measurements of deep internal wave signatures are evident in oscillatory variations around the background descent rates reported by one model of Deep Argo float. For the 10,045 profiles analyzed here, the average root‐mean‐square of vertical velocity variances,, from 1,000 m to the seafloor, is 0.0045 m s−1, with a 5%–95% range of 0.0028–0.0067 m s−1. Dominant vertical wavelengths,λz, estimated from the integrals of lagged autocorrelation sequences have an average value of 757 m, with a 5%–95% range of 493–1,108 m. Bothandλzexhibit regional variations among and within some deep ocean basins, with generally largerand shorterλzin regions of rougher bathymetry or stronger deep currents. These correlations are both expected, since largerand shorterλzshould be found near internal wave generation regions. 
    more » « less
  4. Abstract The mineral apatite, Ca5(PO4)3(F,Cl,OH), is a ubiquitous accessory mineral, with its volatile content and isotopic compositions used to interpret the evolution of H2O on planetary bodies. During hypervelocity impact, extreme pressures shock target rocks resulting in deformation of minerals; however, relatively few microstructural studies of apatite have been undertaken. Given its widespread distribution in the solar system, it is important to understand how apatite responds to progressive shock metamorphism. Here, we present detailed microstructural analyses of shock deformation in ~560 apatite grains throughout ~550 m of shocked granitoid rock from the peak ring of the Chicxulub impact structure, Mexico. A combination of high‐resolution backscattered electron (BSE) imaging, electron backscatter diffraction mapping, transmission Kikuchi diffraction mapping, and transmission electron microscopy is used to characterize deformation within apatite grains. Systematic, crystallographically controlled deformation bands are present within apatite, consistent with tilt boundaries that contain the <c> (axis) and result from slip in <> (direction) on(plane) during shock deformation. Deformation bands contain complex subgrain domains, isolated dislocations, and low‐angle boundaries of ~1° to 2°. Planar fractures within apatite form conjugate sets that are oriented within either {, {, {, or. Complementary electron microprobe analyses (EPMA) of a subset of recrystallized and partially recrystallized apatite grains show that there is an apparent change in MgO content in shock‐recrystallized apatite compositions. This study shows that the response of apatite to shock deformation can be highly variable, and that application of a combined microstructural and chemical analysis workflow can reveal complex deformation histories in apatite grains, some of which result in changes to crystal structure and composition, which are important for understanding the genesis of apatite in both terrestrial and extraterrestrial environments. 
    more » « less
  5. Abstract In this paper, we are interested in the following question: given an arbitrary Steiner triple systemonvertices and any 3‐uniform hypertreeonvertices, is it necessary thatcontainsas a subgraph provided? We show the answer is positive for a class of hypertrees and conjecture that the answer is always positive. 
    more » « less