skip to main content


Title: Identifying the need for locally-observed wet bulb globe temperature across outdoor athletic venues for current and future climates in a desert environment
Abstract

Exertional heat illness and stroke are serious concerns across youth and college sports programs. While some teams and governing bodies have adopted the wet bulb globe temperature (WBGT), few practitioners use measurements on the field of play; rather, they often rely on regionally modeled or estimated WBGT. However, urban development-induced heat and projected climate change increase exposure to heat. We examined WBGT levels between various athletic surfaces and regional weather stations under current and projected climates and in hot-humid and hot-dry weather regimes in the southwest U.S. in Tempe, Arizona. On-site sun-exposed WBGT data across five days (07:00–19:00 local time) in June (dry) and August (humid) were collected over five athletic surfaces: rubber, artificial turf, clay, grass, and asphalt. Weather station data were used to estimate regional WBGT (via the Liljegren model) and compared to on-site, observed WBGT. Finally, projected changes to WBGT were modeled under mid-century and late-century conditions. On-field WBGT observations were, on average, significantly higher than WBGT estimated from regional weather stations by 2.4 °C–2.5 °C, with mean on-field WBGT across both months of 28.5 ± 2.76 °C (versus 25.8 ± 3.21 °C regionally). However, between-athletic surface WBGT differences were largely insignificant. Significantly higher mean WBGTs occurred in August (30.1 ± 2.35 °C) versus June (26.9 ± 2.19 °C) across all venues; August conditions reached ‘limit activity’ or ‘cancellation’ thresholds for 6–8 h and 2–4 h of the day, respectively, for all sports venues. Climate projections show increased WBGTs across measurement locations, dependent on projection and period, with average August WBGT under the highest representative concentration pathway causing all-day activity cancellations. Practitioners are encouraged to use WBGT devices within the vicinity of the fields of play, yet should not rely on regional weather station estimations without corrections used. Heat concerns are expected to increase in the future, underlining the need for athlete monitoring, local cooling design strategies, and heat adaptation for safety.

 
more » « less
NSF-PAR ID:
10360655
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
16
Issue:
12
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 124042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Many urban climates are characterized by increased temperature and decreased relative humidity, under climate change and compared to surrounding rural landscapes. The two trends have contrasting effects on human-perceived heat stress. However, their combined impact on urban humid heat and adaptation has remained largely unclear. Here, we use simulations from an earth system model to investigate how urbanization coupled with climate change affects urban humid heat stress, exposure, and adaptation. Our results show that urban humid heat will increase substantially across the globe by 3.1 °C by the end of the century under a high emission scenario. This projected trend is largely attributed to climate change-driven increases in specific humidity (1.8 °C), followed by air temperature (1.4 °C)—with urbanization impacts varying by location and of a smaller magnitude. Urban humid heat stress is projected to be concentrated in coastal, equatorial areas. At least 44% of the projected urban population in 2100, the equivalent of over 3 billion people worldwide, is projected to be living in an urban area with high humid heat stress. We show a critical, climate-driven dilemma between cooling efficacy and water limitation of urban greenery-based heat adaptation. Insights from our study emphasize the importance of using urban-explicit humid heat measures for more accurate assessments of urban heat exposure and invite careful evaluation of the feasibility of green infrastructure as a long-term cooling strategy.

     
    more » « less
  2. Abstract

    Wet‐bulb globe temperature (WBGT) is a widely applied heat stress index. However, most applications of WBGT within the heat stress impact literature that do not use WBGT at all, but use one of the ad hoc approximations, typically the simplified WBGT (sWBGT) or the environmental stress index (ESI). Surprisingly, little is known about how well these approximations work for the global climate and climate change settings that they are being applied to. Here, we assess the bias distribution as a function of temperature, humidity, wind speed, and radiative conditions of both sWBGT and ESI relative to a well‐validated, explicit physical model for WBGT developed by Liljegren, within an idealized context and the more realistic setting of ERA5 reanalysis data. sWBGT greatly overestimates heat stress in hot‐humid areas. ESI has much smaller biases in the range of standard climatological conditions. Over subtropical dry regions, both metrics can substantially underestimate extreme heat. We show systematic overestimation of labor loss by sWBGT over much of the world today. We recommend discontinuing the use of sWBGT. ESI may be acceptable for assessing average heat stress or integrated impact over a long period like a year, but less suitable for health applications, extreme heat stress analysis, or as an operational index for heat warning, heatwave forecasting, or guiding activity modification at the workplace. Nevertheless, Liljegren's approach should be preferred over these ad hoc approximations and we provide a fast Python implementation to encourage its widespread use.

     
    more » « less
  3. Abstract

    Extreme heat research has largely focused on dry‐heat, while humid‐heat that poses a substantial threat to human‐health remains relatively understudied. Using hourly high‐resolution ERA5 reanalysis and HadISD station data, we provide the first spatially comprehensive, global‐scale characterization of the magnitude, seasonal timing, and frequency of dry‐ and wet‐bulb temperature extremes and their trends. While the peak dry‐ and humid‐heat extreme occurrences often coincide, their timing differs in climatologically wet regions. Since 1979, dry‐ and humid‐heat extremes have become more frequent over most land regions, with the greatest increases in the tropics and Arctic. Humid‐heat extremes have increased disproportionately over populated regions (∼5.0 days per‐person per‐decade) relative to global land‐areas (∼3.6 days per‐unit‐land‐area per‐decade) and population exposure to humid‐heat has increased at a faster rate than to dry‐heat. Our study highlights the need for a multivariate approach to understand and mitigate future harm from heat stress in a warming world.

     
    more » « less
  4. Abstract

    The impact of extreme heat on crop yields is an increasingly pressing issue given anthropogenic climate warming. However, some of the physical mechanisms involved in these impacts remain unclear, impeding adaptation-relevant insight and reliable projections of future climate impacts on crops. Here, using a multiple regression model based on observational data, we show that while extreme dry heat steeply reduced U.S. corn and soy yields, humid heat extremes had insignificant impacts and even boosted yields in some areas, despite having comparably high dry-bulb temperatures as their dry heat counterparts. This result suggests that conflating dry and humid heat extremes may lead to underestimated crop yield sensitivities to extreme dry heat. Rainfall tends to precede humid but not dry heat extremes, suggesting that multivariate weather sequences play a role in these crop responses. Our results provide evidence that extreme heat in recent years primarily affected yields by inducing moisture stress, and that the conflation of humid and dry heat extremes may lead to inaccuracy in projecting crop yield responses to warming and changing humidity.

     
    more » « less
  5. Abstract Extreme heat events are becoming more frequent and intense. In cities, the urban heat island (UHI) can often intensify extreme heat exposure, presenting a public health challenge across vulnerable populations without access to adaptive measures. Here, we explore the impacts of increasing residential air-conditioning (AC) adoption as one such adaptive measure to extreme heat, with New York City (NYC) as a case study. This study uses AC adoption data from NYC Housing and Vacancy Surveys to study impacts to indoor heat exposure, energy demand, and UHI. The Weather Research and Forecasting (WRF) model, coupled with a multilayer building environment parameterization and building energy model (BEP–BEM), is used to perform this analysis. The BEP–BEM schemes are modified to account for partial AC use and used to analyze current and full AC adoption scenarios. A city-scale case study is performed over the summer months of June–August 2018, which includes three different extreme heat events. Simulation results show good agreement with surface weather stations. We show that increasing AC systems to 100% usage across NYC results in a peak energy demand increase of 20%, while increasing UHI on average by 0.42 °C. Results highlight potential trade-offs in extreme heat adaptation strategies for cities, which may be necessary in the context of increasing extreme heat events. 
    more » « less