skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metabolomics-based analysis of miniature flask contents identifies tobacco mixture use among the ancient Maya
Abstract A particular type of miniature ceramic vessel locally known as “veneneras” is occasionally found during archaeological excavations in the Maya Area. To date, only one study of a collection of such containers successfully identified organic residues through coupled chromatography–mass spectrometry methods. That study identified traces of nicotine likely associated with tobacco. Here we present a more complete picture by analyzing a suite of possible complementary ingredients in tobacco mixtures across a collection of 14 miniature vessels. The collection includes four different vessel forms and allows for the comparison of specimens which had previously formed part of museum exhibitions with recently excavated, untreated containers. Archaeological samples were compared with fresh as well as cured reference materials from two different species of tobacco (Nicotiana tabacumandN. rustica). In addition, we sampled six more plants which are linked to mind-altering practices through Mesoamerican ethnohistoric or ethnographic records. Analyses were conducted using UPLC-MS metabolomics-based analytical techniques, which significantly expand the possible detection of chemical compounds compared to previous biomarker-focused studies. Results include the detection of more than 9000 residual chemical features. We trace, for the first time, the presence of Mexican marigold (Tagetes lucida) in presumptive polydrug mixtures.  more » « less
Award ID(s):
1918966
PAR ID:
10360712
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tobacco use significantly influences the oral microbiome. However, less is known about how different tobacco products specifically impact the oral microbiome over time. To address this knowledge gap, we characterized the oral microbiome of cigarette users, smokeless tobacco users, and non-users over 4 months (four time points). Buccal swab and saliva samples (n = 611) were collected from 85 participants. DNA was extracted from all samples and sequencing was carried out on an Illumina MiSeq, targeting the V3–V4 region of the 16S rRNA gene. Cigarette and smokeless tobacco users had more diverse oral bacterial communities, including a higher relative abundance ofFirmicutesand a lower relative abundance ofProteobacteria, when compared to non-users. Non-users had a higher relative abundance ofActinomyces, Granulicatella, Haemophilus, Neisseria, Oribacterium, Prevotella, Pseudomonas, Rothia, andVeillonellain buccal swab samples, compared to tobacco users. While the most abundant bacterial genera were relatively constant over time, some species demonstrated significant shifts in relative abundance between the first and last time points. In addition, some opportunistic pathogens were detected among tobacco users includingNeisseria subflava, Bulleidia mooreiandPorphyromonas endodontalis. Overall, our results provide a more holistic understanding of the structure of oral bacterial communities in tobacco users compared to non-users. 
    more » « less
  2. null (Ed.)
    In the past decade, Light Detection and Ranging (lidar) has fundamentally changed our ability to remotely detect archaeological features and deepen our understanding of past human-environment interactions, settlement systems, agricultural practices, and monumental constructions. Across archaeological contexts, lidar relief visualization techniques test how local environments impact archaeological prospection. This study used a 132 km2 lidar dataset to assess three relief visualization techniques—sky-view factor (SVF), topographic position index (TPI), and simple local relief model (SLRM)—and object-based image analysis (OBIA) on a slope model for the non-automated visual detection of small hinterland Classic (250–800 CE) Maya settlements near the polities of Uxbenká and Ix Kuku’il in Southern Belize. Pedestrian survey in the study area identified 315 plazuelas across a 35 km2 area; the remaining 90 km2 in the lidar dataset is yet to be surveyed. The previously surveyed plazuelas were compared to the plazuelas visually identified on the TPI and SLRM. In total, an additional 563 new possible plazuelas were visually identified across the lidar dataset, using TPI and SLRM. Larger plazuelas, and especially plazuelas located in disturbed environments, are often more likely to be detected in a visual assessment of the TPI and SLRM. These findings emphasize the extent and density of Classic Maya settlements and highlight the continued need for pedestrian survey to ground-truth remotely identified archaeological features and the impact of modern anthropogenic behaviors for archaeological prospection. Remote sensing and lidar have deepened our understanding of past human settlement systems and low-density urbanism, processes that we experience today as humans residing in modern cities. 
    more » « less
  3. Abstract This case study examines the use of X‐ray fluorescence (XRF) as an effective method for defining distinct chemical compositions of local basalt stone from different sources in the Roman period, even when their quarries have not been identified. It also deals with the archaeological question if public and monumental structures from a village and urban site shared the same stone sources and stonemason's workshops. Ninety‐six samples from the HipposTerritorium, mainly from the polis of Hippos and the village of Majduliyya, were analyzed. XRF was found to be an effective method for defining distinct chemical compositions of local basalt materials from different sources. The distinct composition of the basalt stones between the two sites provided valuable insights into socio‐economic relationships, shedding light on the nature of city–village dynamics in the region. Additionally, it aids in discerning whether diverse basalt sources were utilized in both private and public constructions, as well as installations within a single site. Methodological questions and the application of this method in the archaeological research of basalt‐based architecture are also addressed. 
    more » « less
  4. Glycocalyx (GCX) is a carbohydrate-rich structure that coats the surface of endothelial cells (ECs) and lines the blood vessel lumen. Mechanical perturbations in the vascular environment, such as blood vessel stiffness, can be transduced and sent to ECs through mechanosensors such as GCX. Adverse stiffness alters GCX-mediated mechanotransduction and leads to EC dysfunction and eventually atherosclerotic cardiovascular diseases. To understand GCX-regulated mechanotransduction events, anin vitromodel emulatingin vivovessel conditions is needed. To this end, we investigated the impact of matrix chemical and mechanical properties on GCX expression via fabricating a tunable non-swelling matrix based on the collagen-derived polypeptide, gelatin. To study the effect of matrix composition, we conducted a comparative analysis of GCX expression using different concentrations (60–25,000 μg/mL) of gelatin and gelatin methacrylate (GelMA) in comparison to fibronectin (60 μg/mL), a standard coating material for GCX-related studies. Using immunocytochemistry analysis, we showed for the first time that different substrate compositions and concentrations altered the overall GCX expression on human umbilical vein ECs (HUVECs). Subsequently, GelMA hydrogels were fabricated with stiffnesses of 2.5 and 5 kPa, representing healthy vessel tissues, and 10 kPa, corresponding to diseased vessel tissues. Immunocytochemistry analysis showed that on hydrogels with different levels of stiffness, the GCX expression in HUVECs remained unchanged, while its major polysaccharide components exhibited dysregulation in distinct patterns. For example, there was a significant decrease in heparan sulfate expression on pathological substrates (10 kPa), while sialic acid expression increased with increased matrix stiffness. This study suggests the specific mechanisms through which GCX may influence ECs in modulating barrier function, immune cell adhesion, and mechanotransduction function under distinct chemical and mechanical conditions of both healthy and diseased substrates. 
    more » « less
  5. Abstract An increasing number of ecological studies have used chemical diversity as a functionally relevant, scalable measure of phytochemical mixtures, demanding more rigorous attention to how chemical diversity is estimated. Most studies have focused on the composition of phytochemical mixtures and have largely ignored structural concerns, which may have greater importance for ecological function. Here, we explore the development of structural complexity and compositional diversity resulting from different biotic and abiotic interactions inPiper kelleyiTepe (Piperaceae). We also describe how variation in structural complexity and compositional diversity differs between two congeners,P. kelleyiandP.reticulatum. To better interpret these results, we have developed a framework for interpreting these dimensions of chemical diversity in phytochemical mixtures.We used the tropical shrub,P.kelleyi, as a model system to examine interactions between ecological factors and dimensions of phytochemical diversity. We also compared compositional diversity and metabolic complexity inP. kelleyiandP. reticulatumusing liquid chromatography and1H NMR, respectively, to examine trade‐offs between compositional diversity and structural complexity. A framework is provided to generate meaningful estimates of the structural complexity of phytochemical mixtures as measured by1H NMR.Piperis an abundant plant genus that supports diverse insect communities throughout the tropics. Subtle changes in understorey forest light were associated with increases in herbivory that directly increased compositional diversity and indirectly decreased structural complexity inP. kelleyi. This was attributed to the production of oxidation products resulting from herbivory‐driven decomposition of structurally complex defence compounds. This type of complex result would remain undetected using standard chemical ecology approaches and accounts for the detailed molecular changes that are likely to affect species interactions.Synthesis. Our quantitative framework provides a method for considering trade‐offs between structural complexity and compositional diversity and the interpretation of analytical approaches for each. This methodology will provide new theoretical insights and a more sophisticated model for examining the ecology and evolution of chemically mediated interactions. 
    more » « less