skip to main content

Title: Detecting Classic Maya Settlements with Lidar-Derived Relief Visualizations
In the past decade, Light Detection and Ranging (lidar) has fundamentally changed our ability to remotely detect archaeological features and deepen our understanding of past human-environment interactions, settlement systems, agricultural practices, and monumental constructions. Across archaeological contexts, lidar relief visualization techniques test how local environments impact archaeological prospection. This study used a 132 km2 lidar dataset to assess three relief visualization techniques—sky-view factor (SVF), topographic position index (TPI), and simple local relief model (SLRM)—and object-based image analysis (OBIA) on a slope model for the non-automated visual detection of small hinterland Classic (250–800 CE) Maya settlements near the polities of Uxbenká and Ix Kuku’il in Southern Belize. Pedestrian survey in the study area identified 315 plazuelas across a 35 km2 area; the remaining 90 km2 in the lidar dataset is yet to be surveyed. The previously surveyed plazuelas were compared to the plazuelas visually identified on the TPI and SLRM. In total, an additional 563 new possible plazuelas were visually identified across the lidar dataset, using TPI and SLRM. Larger plazuelas, and especially plazuelas located in disturbed environments, are often more likely to be detected in a visual assessment of the TPI and SLRM. These findings emphasize the extent and density more » of Classic Maya settlements and highlight the continued need for pedestrian survey to ground-truth remotely identified archaeological features and the impact of modern anthropogenic behaviors for archaeological prospection. Remote sensing and lidar have deepened our understanding of past human settlement systems and low-density urbanism, processes that we experience today as humans residing in modern cities. « less
Award ID(s):
1649080 0827305 0803353
Publication Date:
Journal Name:
Remote Sensing
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. We present results from the archaeological analysis of 331 km2 of high-resolution airborne lidar data collected in the Upper Usumacinta River basin of Mexico and Guatemala. Multiple visualizations of the DEM and multi-spectral data from four lidar transects crossing the Classic period (AD 350–900) Maya kingdoms centered on the sites of Piedras Negras, La Mar, and Lacanja Tzeltal permitted the identification of ancient settlement and associated features of agricultural infrastructure. HDBSCAN (hierarchical density-based clustering of applications with noise) cluster analysis was applied to the distribution of ancient structures to define urban, peri-urban, sub-urban, and rural settlement zones. Interpretations of these remotely sensed data are informed by decades of ground-based archaeological survey and excavations, as well as a rich historical record drawn from inscribed stone monuments. Our results demonstrate that these neighboring kingdoms in three adjacent valleys exhibit divergent patterns of structure clustering and low-density urbanism, distributions of agricultural infrastructure, and economic practices during the Classic period. Beyond meeting basic subsistence needs, agricultural production in multiple areas permitted surpluses likely for the purposes of tribute, taxation, and marketing. More broadly, this research highlights the strengths of HDBSCAN to the archaeological study of settlement distributions when compared to more commonly applied methodsmore »of density-based cluster analysis.« less
  2. The lower Usumacinta–Grijalva River Basin contains one of the richest biodiversity landscapes of the Maya region. Our research is based on (1) an integrative literature review of the geomorphological and archaeological papers published about the lower Usumacinta–Grijalva River Basin and (2) topographic analysis of digital elevation models using a geographical information system to explore the relationship between past human settlement and landscape accessibility along the coastal plain of Tabasco. This work provides a new synthesis of previous research and proposes new models for the geomorphic evolution of the lower Usumacinta–Grijalva River Basin in the context of four millennia of human land use and settlement. For the evolution of the strand-plain of the Usumacinta and Grijalva rivers, there are two published geochronological models that provide different chronologies. We discuss here how both geochronological models encompass Pre-Columbian human settlement in the delta. Interestingly, we notice that one of them overlaps a possible high-magnitude flood event (or events) that drove large geomorphic change around 750 CE (1200 BP), with implications for settlement patterns and chronology. Based on topographical analysis of the eastern-distal sector of the Usumacinta–Grijalva delta, we propose a new model for the evolution of this area with implications for the humanmore »occupation during the Mesoamerican Terminal Classic and Early Postclassic on the delta. As one of the main conclusions, we propose that the Pom–Atasta water bodies predate much of the Usumacinta–Grijalva delta and the most recent phase of delta building overlays the original lagoon barriers, resulting in a geomorphic setting more attractive to local human occupation after the Terminal Classic period. According to one of the geochronological models of the delta, this dates to ca. 900 CE, preceding the establishment of nearby settlements such as Atasta.

    « less
  3. Zerboni, A (Ed.)
    The application of lidar remote-sensing technology has revolutionized the practice of settlement and landscape archaeology, perhaps nowhere more so than in the Maya lowlands. This contribution presents a substantial lidar dataset from the Puuc region of Yucatan, Mexico, a cultural subregion of the ancient Maya and a distinct physiographic zone within the Yucatan peninsula. Despite the high density of known sites, no large site has been fully surveyed, and little is known about intersite demography. Lidar technology allows determination of settlement distribution for the first time, showing that population was elevated but nucleated, although without any evidence of defensive features. Population estimates suggest a region among the most densely settled within the Maya lowlands, though hinterland levels are modest. Lacking natural bodies of surface water, the ancient Puuc inhabitants relied upon various storage technologies, primarily chultuns (cisterns) and aguadas (natural or modified reservoirs for potable water). Both are visible in the lidar imagery, allowing calculation of aguada capacities by means of GIS software. The imagery also demonstrates an intensive and widespread stone working industry. Ovens visible in the imagery were probably used for the production of lime, used for construction purposes and perhaps also as a softening agent for maize.more »Quarries can also be discerned, including in some cases substantial portions of entire hills. With respect to agriculture, terrain classification permits identification of patches of prime cultivable land and calculation of their extents. Lidar imagery also provides the first unequivocal evidence for terracing in the Puuc, indeed in all northern Yucatan. Finally, several types of civic architecture and architectural complexes are visible, including four large acropolises probably dating to the Middle Formative period (700–450 B. C.). Later instances of civic architecture include numerous Early Puuc Civic Complexes, suggesting a common form of civic organization at the beginning of the Late Classic demographic surge, (A.D. 600–750).« less
  4. Airborne laser scanning has proven useful for rapid and extensive documentation of historic cultural landscapes after years of applications mapping natural landscapes and the built environment. The recent integration of unoccupied aerial vehicles (UAVs) with LiDAR systems is potentially transformative and offers complementary data for mapping targeted areas with high precision and systematic study of coupled natural and human systems. We report the results of data capture, analysis, and processing of UAV LiDAR data collected in the Maya Lowlands of Chiapas, Mexico in 2019 for a comparative landscape study. Six areas of archaeological settlement and long-term land-use reflecting a diversity of environments, land cover, and archaeological features were studied. These missions were characterized by areas that were variably forested, rugged, or flat, and included pre-Hispanic settlements and agrarian landscapes. Our study confirms that UAV LiDAR systems have great potential for broader application in high-precision archaeological mapping applications. We also conclude that these studies offer an important opportunity for multi-disciplinary collaboration. UAV LiDAR offers high-precision information that is not only useful for mapping archaeological features, but also provides critical information about long-term land use and landscape change in the context of archaeological resources.
  5. Lowland Maya civilization flourished in the tropical region of the Yucatan peninsula and environs for more than 2500 years (~1000 BCE to 1500 CE). Known for its sophistication in writing, art, architecture, astronomy, and mathematics, Maya civilization still poses questions about the nature of its cities and surrounding populations because of its location in an inaccessible forest. In 2016, an aerial lidar survey across 2144 square kilometers of northern Guatemala mapped natural terrain and archaeological features over several distinct areas. We present results from these data, revealing interconnected urban settlement and landscapes with extensive infrastructural development. Studied through a joint international effort of interdisciplinary teams sharing protocols, this lidar survey compels a reevaluation of Maya demography, agriculture, and political economy and suggests future avenues of field research.