Volatile organic compounds (VOCs) in urine headspace are potential biomarkers for different medical conditions, as canines can detect human diseases simply by smelling VOCs. Because dogs can detect disease-specific VOCs, gas chromatography–mass spectrometry (GC–MS) systems may be able to differentiate medical conditions with enhanced accuracy and precision, given they have unprecedented efficiency in separating, quantifying, and identifying VOCs in urine. Advancements in instrumentation have permitted the development of portable GC–MS systems that analyze VOCs at the point of care, but these are designed for environmental monitoring, emergency response, and manufacturing/processing. The purpose of this study is to repurpose the HAPSITE® ER portable GC–MS for identifying urinary VOC biomarkers. Method development focused on optimizing sample preparation, off-column conditions, and instrumental parameters that may affect performance. Once standardized, the method was used to analyze a urine standard (n = 10) to characterize intra-day reproducibility. To characterize inter-day performance, n = 3 samples each from three volunteers (and the standard) were analyzed each day for a total of four days (n = 48 samples). Results showed the method could detect VOC signals with adequate reproducibility and distinguish VOC profiles from different volunteers with 100% accuracy.
more »
« less
Micro-contextual identification of archaeological lipid biomarkers using resin-impregnated sediment slabs
Abstract Characterizing organic matter preserved in archaeological sediment is crucial to behavioral and paleoenvironmental investigations. This task becomes particularly challenging when considering microstratigraphic complexity. Most of the current analytical methods rely on loose sediment samples lacking spatial and temporal resolution at a microstratigraphic scale, adding uncertainty to the results. Here, we explore the potential of targeted molecular and isotopic biomarker analysis on polyester resin-impregnated sediment slabs from archaeological micromorphology, a technique that provides microstratigraphic control. We performed gas chromatography–mass spectrometry (GC–MS) and gas chromatography–isotope ratio mass spectromety (GC–IRMS) analyses on a set of samples including drill dust from resin-impregnated experimental and archaeological samples, loose samples from the same locations and resin control samples to assess the degree of interference of polyester resin in the GC–MS and Carbon-IRMS signals of different lipid fractions (n-alkanes, aromatics, n-ketones, alcohols, fatty acids and other high polarity lipids). The results show that biomarkers within the n-alkane, aromatic, n-ketone, and alcohol fractions can be identified. Further work is needed to expand the range of identifiable lipid biomarkers. This study represents the first micro-contextual approach to archaeological lipid biomarkers and contributes to the advance of archaeological science by adding a new method to obtain behavioral or paleoenvironmental proxies.
more »
« less
- Award ID(s):
- 1758285
- PAR ID:
- 10360719
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
RationaleNitrogen isotopic compositions (δ15N) of source and trophic amino acids (AAs) are crucial tracers of N sources and trophic enrichments in diverse fields, including archeology, astrobiochemistry, ecology, oceanography, and paleo‐sciences. The current analytical technique using gas chromatography‐combustion‐isotope ratio mass spectrometry (GC/C/IRMS) requires derivatization, which is not compatible with some key AAs. Another approach using high‐performance liquid chromatography‐elemental analyzer‐IRMS (HPLC/EA/IRMS) may experience coelution issues with other compounds in certain types of samples, and the highly sensitive nano‐EA/IRMS instrumentations are not widely available. MethodsWe present a method for high‐precision δ15N measurements of AAs (δ15N‐AA) optimized for canonical source AA‐phenylalanine (Phe) and trophic AA‐glutamic acid (Glu). This offline approach entails purification and separation via high‐pressure ion‐exchange chromatography (IC) with automated fraction collection, the sequential chemical conversion of AA to nitrite and then to nitrous oxide (N2O), and the final determination of δ15N of the produced N2O via purge‐and‐trap continuous‐flow isotope ratio mass spectrometry (PT/CF/IRMS). ResultsThe cross‐plots of δ15N of Glu and Phe standards (four different natural‐abundance levels) generated by this method and their accepted values have a linear regression slope of 1 and small intercepts demonstrating high accuracy. The precisions were 0.36‰–0.67‰ for Phe standards and 0.27‰–0.35‰ for Glu standards. Our method and the GC/C/IRMS approach produced equivalent δ15N values for two lab standards (McCarthy Lab AA mixture and cyanobacteria) within error. We further tested our method on a wide range of natural sample matrices and obtained reasonable results. ConclusionsOur method provides a reliable alternative to the current methods for δ15N‐AA measurement as IC or HPLC‐based techniques that can collect underivatized AAs are widely available. Our chemical approach that converts AA to N2O can be easily implemented in laboratories currently analyzing δ15N of N2O using PT/CF/IRMS. This method will help promote the use of δ15N‐AA in important studies of N cycling and trophic ecology in a wide range of research areas.more » « less
-
Purpose This paper aims to study the mass loss of three-dimensional (3D) printed materials at high temperatures. A preconcentration and analysis technique, static headspace gas chromatography-mass spectrometry (SHS-GC-MS), is demonstrated for the analysis of volatile compounds liberated from fused deposition modeling (FDM) and stereolithography (SLA) 3D printed models under elevated temperatures. Design/methodology/approach A total of seven commercial 3D printing materials were tested using the SHS-GC-MS approach. The printed model mass and mass loss were examined as a function of FDM printing parameters including printcore temperature, model size and printing speed, and the use of SLA postprocessing procedures. A high temperature resin was used to demonstrate that thermal degradation products can be identified when the model is incubated under high temperatures. Findings At higher printing temperatures and larger model sizes, the initial printed model mass increased and showed more significant mass loss after thermal incubation for FDM models. For models produced by SLA, the implementation of a postprocessing procedure reduced the mass loss at elevated temperatures. All FDM models showed severe structural deformation when exposed to high temperatures, while SLA models remained structurally intact. Mass spectra and chromatographic retention times acquired from the high temperature resin facilitated identification of eight compounds (monomers, crosslinkers and several photoinitiators) liberated from the resin. Originality/value The study exploits the high sensitivity of SHS-GC-MS to identify thermal degradation products emitted from 3D printed models under elevated temperatures. The results will aid in choosing appropriate filament/resin materials and printing mechanisms for applications that require elevated temperatures.more » « less
-
Quantifying trace levels of microplastics in complex environmental media remains a challenge. In this study, an approach combining field collection of samples from different depths, sample size fractionation, and plastic quantification via pyrolysis-gas chromatography–mass spectrometry (Py-GC–MS) was employed to identify and quantify microplastics at two public beaches along the northeast coast of the U.S. (Salisbury beach, MA and Hampton beach, NH). A simple sampling tool was used to collect beach sand from depth intervals of 0–5 cm and 5–10 cm, respectively. The samples were sieved to give three size fractions: coarse (>1.2 mm), intermediate (100 μm–1.2 mm), and fine (1.2 μm–100 μm) particles. Following density separation and wet peroxide oxidation, a low-temperature solvent extraction protocol involving 2-chlorophenol was used to extract polyester (PET), polystyrene (PS), polyamide (PA), and polyvinyl chloride (PVC). The extract was analyzed using Py-GC–MS for the respective polymers, while the solid residue was pyrolyzed separately for polyethylene (PE) and polypropylene (PP). The one-step solvent extraction method significantly simplified the sample matrix and improved the sensitivity of analysis. Among the samples, PET was detected in greater quantities in the fine fraction than in the intermediate size fraction, and PET fine particles were located predominantly in the surface sand. Similar to PET, PS was detected at higher mass concentrations in the fine particles in most samples. These results underscore the importance of beach environment for plastic fragmentation, where a combination of factors including UV irradiation, mechanical abrasion, and water exposure promote plastic breakdown. Surface accumulation of fine plastic particles may also be attributed to transport of microplastics through wind and tides. The proposed sample treatment and analysis methods may allow sensitive and quantitative measurements of size or depth related distribution patterns of microplastics in complex environmental media.more » « less
-
Fentanyl analogues and their positional isomers have similar chemical structural configurations making them difficult to identify and differentiate. Gas chromatography coupled to a gas-phase infrared detector (GC-IRD) is a useful and powerful tool for the unambiguous identification of fentanyl compounds where traditional analytical techniques such as gas chromatography–mass spectrometry (GC–MS) offer limited information for this class of compounds. In this study, we demonstrate the utility of GC-IRD and show how this complementary information enables the identification of fentanyl analogues (2- and 3- furanylfentanyl, 2-furanylbenzylfentanyl, croto- nylfentanyl, cyclopropylfentanyl, methoxyacetylfentanyl, carfentanil, meta-fluoroisobutyryl fentanyl, para- fluoroisobutyryl fentanyl and ortho-fluoroisobutyryl fentanyl) when combined with GC–MS data. A description of the operating conditions including how the optimization of GC-IRD parameters can enhance the spectral resolution and unambiguous identification of these fentanyl analogues is presented, for the first time. In par- ticular, the effects of light pipe temperatures, acquisition resolution, the use of a programmed temperature vaporizing (PTV) inlet, and the analytical concentration of the sample were evaluated. A real-world case ex- ncountered in casework and how the implementation of GC- of these challenges in fentanyl differentiation and identification.more » « less
An official website of the United States government
