skip to main content


Title: An overview of the hydrology of non‐perennial rivers and streams
Abstract

Non‐perennial rivers and streams are ubiquitous on our planet. Although several metrics have been used to statistically group or compare streamflow characteristics, there is currently no widely used definition of how many days or over what reach length surface flow must cease in order to classify a river as non‐perennial. At the same time, the breadth of climate and geographic settings for non‐perennial rivers leads to diversity in their flow regimes, such as how often or how quickly they go dry. These rivers have a rich and expanding body of literature addressing their ecologic and geomorphic features, but are often said to be ignored by hydrologists. Yet there is much we do know about their hydrology in terms of streamflow generation processes, water losses, and variability in flow. We also know that while they are prevalent in arid regions, they occur across all climate types and experience a diverse set of natural and anthropogenic controls on streamflow. Furthermore, measuring and modeling the hydrology of these rivers presents a distinct set of challenges, and there are many research directions, which still require further attention. Therefore, we present an overview of the current understanding, methodologic challenges, knowledge gaps, and research directions for hydrologic understanding of non‐perennial rivers; critical topics in light of both growing global water scarcity and ever‐changing laws and policies that dictate whether and how much environmental protection these rivers receive.

This article is categorized under:

Science of Water > Science of Water

 
more » « less
Award ID(s):
1754389 2207232
NSF-PAR ID:
10360720
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Water
Volume:
8
Issue:
2
ISSN:
2049-1948
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate change is increasing the frequency, severity, and extent of wildfires and drought in many parts of the world, with numerous repercussions for the physical, chemical, and biological characteristics of streams. However, information on how these perturbations affect top predators and their impacts on lower trophic levels in streams is limited.

    The top aquatic predator in southern California streams is nativeOncorhynchus mykiss, the endangered southern California steelhead trout (trout). To examine relationships among the distribution of trout, environmental factors, and stream invertebrate resources and assemblages, we sampled pools in 25 stream reaches that differed in the presence (nine reaches) or absence (16 reaches) of trout over 12 years, including eight reaches where trout were extirpated during the study period by drought or post‐fire flood disturbances.

    Trout were present in deep pools with high water and habitat quality. Invertebrate communities in trout pools were dominated by a variety of medium‐sized collector–gatherer and shredder invertebrate taxa with non‐seasonal life cycles, whereas tadpoles and large, predatory invertebrates (Odonata, Coleoptera, Hemiptera [OCH]), often with atmospheric breather traits, were more abundant in troutless than trout pools.

    Structural equation modelling of the algal‐based food web indicated a trophic cascade from trout to predatory invertebrates to collector–gatherer taxa and weaker direct negative trout effects on grazers; however, both grazers and collector–gatherers also were positively related to macroalgal biomass. Structural equation modelling also suggested that bottom‐up interactions and abiotic factors drove the detritus‐based food web, with shredder abundance being positively related to leaf litter (coarse particulate organic matter) levels, which, in turn, were positively related to canopy cover and negatively related to flow. These results emphasise the context dependency of trout effects on prey communities and of the relative importance of top‐down versus bottom‐up interactions on food webs, contingent on environmental conditions (flow, light, nutrients, disturbances) and the abundances and traits of component taxa.

    Invertebrate assemblage structure changed from a trout to a troutless configuration within a year or two after trout were lost owing to post‐fire scouring flows or drought. Increases in OCH abundance after trout were lost were much more variable after drought than after fire. The reappearance of trout in one stream resulted in quick, severe reductions in OCH abundance.

    These results indicate that climate‐change induced disturbances can result in the extirpation of a top predator, with cascading repercussions for stream communities and food webs. This study also emphasises the importance of preserving or restoring refuge habitats, such as deep, shaded, perennial, cool stream pools with high habitat and water quality, to prevent the extirpation of sensitive species and preserve native biodiversity during a time of climate change.

     
    more » « less
  2. Abstract

    Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well‐mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro‐biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human‐ and climate‐induced perturbations. Although integration has started and co‐located measurements are well under way, tremendous challenges remain. In particular, even in this era of “big data,” we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model‐informed data collection strategies and to maximize data usage; (2) adopt a “simple but not simplistic,” or fit‐for‐purpose approach to include essential processes in process‐based models; (3) blend the use of process‐based and data‐driven models in the framework of “theory‐guided data science.” Within the framework of hypothesis testing, model‐data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro‐biogeochemistry, but also enable hind‐ and fore‐casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems.

    This article is categorized under:

    Engineering Water > Methods

     
    more » « less
  3. Abstract Non-perennial streams are widespread, critical to ecosystems and society, and the subject of ongoing policy debate. Prior large-scale research on stream intermittency has been based on long-term averages, generally using annually aggregated data to characterize a highly variable process. As a result, it is not well understood if, how, or why the hydrology of non-perennial streams is changing. Here, we investigate trends and drivers of three intermittency signatures that describe the duration, timing, and dry-down period of stream intermittency across the continental United States (CONUS). Half of gages exhibited a significant trend through time in at least one of the three intermittency signatures, and changes in no-flow duration were most pervasive (41% of gages). Changes in intermittency were substantial for many streams, and 7% of gages exhibited changes in annual no-flow duration exceeding 100 days during the study period. Distinct regional patterns of change were evident, with widespread drying in southern CONUS and wetting in northern CONUS. These patterns are correlated with changes in aridity, though drivers of spatiotemporal variability were diverse across the three intermittency signatures. While the no-flow timing and duration were strongly related to climate, dry-down period was most strongly related to watershed land use and physiography. Our results indicate that non-perennial conditions are increasing in prevalence over much of CONUS and binary classifications of ‘perennial’ and ‘non-perennial’ are not an accurate reflection of this change. Water management and policy should reflect the changing nature and diverse drivers of changing intermittency both today and in the future. 
    more » « less
  4. Abstract Practitioner points

    Combined (CSO) and sanitary sewer overflows (SSOs) pose both environmental and public health risks as untreated water is discharged into lakes and rivers during high‐intensity rain events.

    Current stand‐alone approaches for managing or treating CSOs focus on particulate BOD/COD and solids removal, and do not typically address soluble BOD or emerging contaminants in stormwater and wastewater (including pathogens).

    New wet weather policies and regulations encourage more holistic approaches by wastewater utilities, and future approaches should include a zero‐overflow goal for all CSOs and SSOs.

    To help achieve zero overflows, the concept of the “peaker facility” is proposed.

    Chemical oxidation may be an applicable component of peaker facilities for its short detention time and ability to remove, oxidize, or inactive water impairment‐causing contaminants.

     
    more » « less
  5. Abstract

    Gas exchange across the air–water boundary of streams and rivers is a globally large biogeochemical flux. Gas exchange depends on the solubility of the gas of interest, the gas concentrations of the air and water, and the gas exchange velocity (k), usually normalized to a Schmidt number of 600, referred to ask600. Gas exchange velocity is of intense research interest because it is problematic to estimate, is highly spatially variable, and has high prediction error. Theory dictates that molecular diffusivity and turbulence drives variation ink600in flowing waters. We measurek600via several methods from direct measures, gas tracer experiments, to modeling of diel changes in dissolved gas concentrations. Many estimates ofk600show that surface turbulence explains variation ink600leading to predictive models based upon geomorphic and hydraulic variables. These variables include stream channel slope and stream flow velocity, the product of which, is proportional to the energy dissipation rate in streams and rivers. These empirical models provide understanding of the controls onk600, yet high residual variation ink600show that these simple models are insufficient for predicting individual locations. The most appropriate method to estimate gas exchange depends on the scientific question along with the characteristics of the study sites. We provide a decision tree for selecting the best method to estimatek600for individual river reaches to scaling to river networks.

    This article is categorized under:

    Water and Life > Nature of Freshwater Ecosystems

    Science of Water > Water Quality

    Water and Life > Methods

     
    more » « less