skip to main content


Title: Impact of Giant Sea Salt Aerosol Particles on Precipitation in Marine Cumuli and Stratocumuli: Lagrangian Cloud Model Simulations
Abstract

The impact of giant sea salt aerosols released from breaking waves on rain formation in marine boundary layer clouds is studied using large-eddy simulations (LES). We perform simulations of marine cumuli and stratocumuli for various concentrations of cloud condensation nuclei (CCN) and giant CCN (GCCN). Cloud microphysics are modeled with a Lagrangian method that provides key improvements in comparison to previous LES of GCCN that used Eulerian bin microphysics. We find that GCCN significantly increase precipitation in stratocumuli. This effect is strongest for low and moderate CCN concentrations. GCCN are found to have a smaller impact on precipitation formation in cumuli. These conclusions are in agreement with field measurements. We develop a simple parameterization of the effect of GCCN on precipitation, accretion, and autoconversion rates in marine stratocumuli.

Significance Statement

Breaking sea waves release salt particles into the atmosphere. Cloud droplets formed on these salt particles can grow larger than droplets formed on other smaller particles. Therefore, sea salt particles can be important for rain formation over oceans. To investigate this effect, we performed idealized computer simulations of stratocumulus and cumulus clouds. Sea salt particles were modeled with an unprecedented precision thanks to the use of an emerging modeling method. In our simulations sea salt particles significantly enhance rain formation in stratocumuli, but not in cumuli. Our study has implications for climate models, because stratocumuli are important for Earth’s energy budget and for rain enhancement experiments.

 
more » « less
NSF-PAR ID:
10361106
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
78
Issue:
12
ISSN:
0022-4928
Format(s):
Medium: X Size: p. 4127-4142
Size(s):
["p. 4127-4142"]
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Long-range transport of biogenic emissions from the coastof Antarctica, precipitation scavenging, and cloud processing are the mainprocesses that influence the observed variability in Southern Ocean (SO)marine boundary layer (MBL) condensation nuclei (CN) and cloud condensationnuclei (CCN) concentrations during the austral summer. Airborne particlemeasurements on the HIAPER GV from north–south transects between Hobart,Tasmania, and 62∘ S during the Southern Ocean Clouds, RadiationAerosol Transport Experimental Study (SOCRATES) were separated into fourregimes comprising combinations of high and low concentrations of CCN andCN. In 5 d HYSPLIT back trajectories, air parcels with elevated CCNconcentrations were almost always shown to have crossed the Antarctic coast,a location with elevated phytoplankton emissions relative to the rest of theSO in the region south of Australia. The presence of high CCN concentrationswas also consistent with high cloud fractions over their trajectory,suggesting there was substantial growth of biogenically formed particlesthrough cloud processing. Cases with low cloud fraction, due to the presenceof cumulus clouds, had high CN concentrations, consistent with previouslyreported new particle formation in cumulus outflow regions. Measurementsassociated with elevated precipitation during the previous 1.5 d of theirtrajectory had low CCN concentrations indicating CCN were effectivelyscavenged by precipitation. A coarse-mode fitting algorithm was used todetermine the primary marine aerosol (PMA) contribution, which accounted for<20 % of CCN (at 0.3 % supersaturation) and cloud dropletnumber concentrations. Vertical profiles of CN and large particleconcentrations (Dp>0.07 µm) indicated that particleformation occurs more frequently above the MBL; however, the growth ofrecently formed particles typically occurs in the MBL, consistent with cloudprocessing and the condensation of volatile compound oxidation products. CCN measurements on the R/V Investigator as part of the second Clouds, Aerosols,Precipitation, Radiation and atmospheric Composition Over the southeRn Ocean(CAPRICORN-2) campaign were also conducted during the same period as theSOCRATES study. The R/V Investigator observed elevated CCN concentrations near Australia,likely due to continental and coastal biogenic emissions. The Antarcticcoastal source of CCN from the south, CCN sources from the midlatitudes, andenhanced precipitation sink in the cyclonic circulation between the Ferreland polar cells (around 60∘ S) create opposing latitudinalgradients in the CCN concentration with an observed minimum in the SObetween 55 and 60∘ S. The SOCRATES airbornemeasurements are not influenced by Australian continental emissions butstill show evidence of elevated CCN concentrations to the south of60∘ S, consistent with biogenic coastal emissions. In addition, alatitudinal gradient in the particle composition, south of the Australianand Tasmanian coasts, is apparent in aerosol hygroscopicity derived from CCNspectra and aerosol particle size distribution. The particles are morehygroscopic to the north, consistent with a greater fraction of sea saltfrom PMA, and less hygroscopic to the south as there is more sulfate andorganic particles originating from biogenic sources in coastal Antarctica. 
    more » « less
  2. Abstract. There has been a growing concern that most climate models predict precipitation that is too frequent, likely due to lack of reliable subgrid variabilityand vertical variations in microphysical processes in low-level warm clouds.In this study, the warm-cloud physics parameterizations in the singe-columnconfigurations of NCAR Community Atmospheric Model version 6 and 5 (SCAM6and SCAM5, respectively) are evaluated using ground-based and airborneobservations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Aerosol and Cloud Experiments in the EasternNorth Atlantic (ACE-ENA) field campaign near the Azores islands during2017–2018. The 8-month single-column model (SCM) simulations show that both SCAM6 and SCAM5 cangenerally reproduce marine boundary layer cloud structure, majormacrophysical properties, and their transition. The improvement in warm-cloud properties from the Community Atmospheric Model 5 and 6 (CAM5 to CAM6) physics can be found through comparison with the observations. Meanwhile, both physical schemes underestimate cloud liquidwater content, cloud droplet size, and rain liquid water content butoverestimate surface rainfall. Modeled cloud condensation nuclei (CCN)concentrations are comparable with aircraft-observed ones in the summer but areoverestimated by a factor of 2 in winter, largely due to the biases in thelong-range transport of anthropogenic aerosols like sulfate. We also testthe newly recalibrated autoconversion and accretion parameterizations thataccount for vertical variations in droplet size. Compared to theobservations, more significant improvement is found in SCAM5 than in SCAM6.This result is likely explained by the introduction of subgrid variationsin cloud properties in CAM6 cloud microphysics, which further suppresses thescheme's sensitivity to individual warm-rain microphysical parameters. Thepredicted cloud susceptibilities to CCN perturbations in CAM6 are within areasonable range, indicating significant progress since CAM5 which produces anaerosol indirect effect that is too strong. The present study emphasizes theimportance of understanding biases in cloud physics parameterizations bycombining SCM with in situ observations.

     
    more » « less
  3. Abstract

    A framework is introduced to investigate the indirect effect of aerosol loading on tropical deep convection using three-dimensional limited-domain idealized cloud-system-resolving model simulations coupled with large-scale dynamics over fixed sea surface temperature. The large-scale circulation is parameterized using the spectral weak temperature gradient (WTG) approximation that utilizes the dominant balance between adiabatic cooling and diabatic heating in the tropics. The aerosol loading effect is examined by varying the number of cloud condensation nuclei (CCN) available to form cloud droplets in the two-moment bulk microphysics scheme over a wide range of environments from 30 to 5000 cm−3. The radiative heating is held at a constant prescribed rate in order to isolate the microphysical effects. Analyses are performed over the period after equilibrium is achieved between convection and the large-scale environment. Mean precipitation is found to decrease modestly and monotonically when the aerosol number concentration increases as convection gets weaker, despite the increase in cloud liquid water in the warm-rain region and ice crystals aloft. This reduction is traced down to the reduction in surface enthalpy fluxes as an energy source to the atmospheric column induced by the coupling of the large-scale motion, though the gross moist stability remains constant. Increasing CCN concentration leads to 1) a cooler free troposphere because of a reduction in the diabatic heating and 2) a warmer boundary layer because of suppressed evaporative cooling. This dipole temperature structure is associated with anomalously descending large-scale vertical motion above the boundary layer and ascending motion at lower levels. Sensitivity tests suggest that changes in convection and mean precipitation are unlikely to be caused by the impact of aerosols on cloud droplets and microphysical properties but rather by accounting for the feedback from convective adjustment with the large-scale dynamics. Furthermore, a simple scaling argument is derived based on the vertically integrated moist static energy budget, which enables estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometeors and microphysical properties is also examined, and it is consistent with the macrophysical picture.

     
    more » « less
  4. The number concentration and properties of aerosol particles serving as cloud condensation nuclei (CCN) are important for understanding cloud properties, including in the tropical Atlantic marine boundary layer (MBL), where marine cumulus clouds reflect incoming solar radiation and obscure the low-albedo ocean surface. Studies linking aerosol source, composition, and water uptake properties in this region have been conducted primarily during the summertime dust transport season, despite the region receiving a variety of aerosol particle types throughout the year. In this study, we compare size-resolved aerosol chemical composition data to the hygrocopicity parameter κ derived from size-resolved CCN measurements made during the Elucidating the Role of Clouds-Circulation Coupling in Climate (EUREC4A) and Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) campaigns from January to February 2020. We observed unexpected periods of wintertime long-range transport of African smoke and dust to Barbados. During these periods, the accumulation-mode aerosol particle and CCN Number concentrations as well as the proportions of dust and smoke particles increased, whereas average κ slightly decreased (κ = 0.46 +/- 0.10) from marine background conditions (κ = 0.52 +/- 0.09) when the particles were mostly composed of marine organics and sulfate. Size-resolved chemical analysis shows that smoke particles were the major contributor to the accumulation mode during long-range transport events, indicating that smoke is mainly responsible for the observed increase in CCN number concentrations. Earlier studies conducted at Barbados have mostly focused on the role of dust in CCN, but our results show that aerosol hygroscopicity and CCN number concentrations during wintertime long-range transport events over the tropical North Atlantic are also affected by African smoke. Our findings highlight the importance of African smoke for atmospheric processes and cloud formation over the Caribbean. In the file “Dust_Mass_Conc_Royer2022” dust mass concentrations in grams per meter^3 are provided for each day of sampling. These data were used to generate Figure 2a in the manuscript. The file “Particle_Type_#fract_Royer2022” contains data obtained through CCSEM/EDX analysis and used to generate the temporal chemistry plot (Figure 4) provided in the manuscript. The data contains particle numbers for each particle type identified on stage 3 of the sampler, total particle numbers analyzed for the entire stage 3 sample, as well as particle number fractions in % values. In the file “Size-resolved_chem_Royer2022” we provide particle # and number fraction (%) values used to generate size-resolved chemistry plots in the manuscript (Figures 5a and 5b). The file includes all particle numbers and number fractions for sea salt, aged sea salt, dust+sea salt, dust, dust+smoke, smoke, sulfate, and organic particles in each size bin from 0.1 through 8.058 um during cumulative clean marine periods and CAT Event 1 as described in the manuscript. The file “K_at_0.16S_Royer2022” contains κ values calculated at 0.16% supersaturation (S) throughout the entire sampling period. These data were specifically used to generate the plot in Figure 7a. The file “CCN#_at_0.16S_Royer2022” contains cloud condensation nuclei (CCN) values calculated at 0.16% supersaturation (S) throughout the entire sampling period. These data were used to create the CCN portion of the plot in Figure 7b. 
    more » « less
  5. Abstract

    The effect of aerosols on the properties of clouds is a large source of uncertainty in predictions of weather and climate. These aerosol‐cloud interactions depend critically on the ability of aerosol particles to form cloud droplets. A challenge in modeling aerosol‐cloud interactions is the representation of interactions between turbulence and cloud microphysics. Turbulent mixing leads to small‐scale fluctuations in water vapor and temperature that are unresolved in large‐scale atmospheric models. To quantify the impact of turbulent fluctuations on cloud condensation nuclei (CCN) activation, we used a high‐resolution Large Eddy Simulation of a convective cloud chamber to drive particle‐based cloud microphysics simulations. We show small‐scale fluctuations strongly impact CCN activity. Once activated, the relatively long timescales of evaporation compared to fluctuations causes droplets to persist in subsaturated regions, which further increases droplet concentrations.

     
    more » « less