skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accurate flux calibration of GW170817: is the X-ray counterpart on the rise?
ABSTRACT X-ray emission from the gravitational wave transient GW170817 is well described as non-thermal afterglow radiation produced by a structured relativistic jet viewed off-axis. We show that the X-ray counterpart continues to be detected at 3.3 years after the merger. Such long-lasting signal is not a prediction of the earlier jet models characterized by a narrow jet core and a viewing angle ≈20 deg, and is spurring a renewed interest in the origin of the X-ray emission. We present a comprehensive analysis of the X-ray dataset aimed at clarifying existing discrepancies in the literature, and in particular the presence of an X-ray rebrightening at late times. Our analysis does not find evidence for an increase in the X-ray flux, but confirms a growing tension between the observations and the jet model. Further observations at radio and X-ray wavelengths would be critical to break the degeneracy between models.  more » « less
Award ID(s):
2108950
PAR ID:
10361163
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
510
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 1902-1909
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. X-ray polarization, which now can be measured by the Imaging X-ray Polarimetry Explorer (IXPE), is a new probe of jets in the supermassive black hole systems of active galactic nuclei (AGNs). Here, we summarize IXPE observations of radio-loud AGNs that have been published thus far. Blazars with synchrotron spectral energy distributions (SEDs) that peak at X-ray energies are routinely detected. The degree of X-ray polarization is considerably higher than at longer wavelengths. This is readily explained by energy stratification of the emission regions when electrons lose energy via radiation as they propagate away from the sites of particle acceleration as predicted in shock models. However, the 2–8 keV polarization electric vector is not always aligned with the jet direction as one would expect unless the shock is oblique. Magnetic reconnection may provide an alternative explanation. The rotation of the polarization vector in Mrk421 suggests the presence of a helical magnetic field in the jet. In blazars with lower-frequency peaks and the radio galaxy Centaurus A, the non-detection of X-ray polarization by IXPE constrains the X-ray emission mechanism. 
    more » « less
  2. Context.The well-studied active galactic nucleus (AGN) 3C 273 displays characteristics of both jetted-AGNs and Seyfert galaxies, which makes it an excellent source to study the disc-jet connection in AGNs. Aims.We aim to investigate the disc-jet scenario in 3C 273 using broad-band (0.3–78 keV) X-ray spectra fromXMM-NewtonandNuSTAR. Methods.We used simultaneousXMM-NewtonandNuSTARobservations of 3C 273 carried out between 2012 and 2024. The 0.3–78 keV X-ray spectra were first fitted with a simple power law (PL) and then with the accretion-ejection-basedJeTCAFmodel. TheJeTCAFmodel accounts for emission from the jet, which extends up to the sonic surface. In this framework, a reflection hump above 10 keV can also arise due to the bulk motion Comptonization of coronal photons by the jet. Results.We find that the simple PL did not provide a good fit, leaving significant residuals at energies below 1.5 keV. All the spectra were fitted well by theJeTCAFmodel. The weighted-averaged black hole mass of (7.77 ± 0.30) × 108 Mobtained from theJeTCAFmodel is comparable with the previous estimates based on reverberation mapping observations and accretion disc models. Conclusions.The 0.3–78 keV X-ray emission of 3C 273 can be fit by the accretion-ejection-based model in which the corona and the jet on top of it make significant contributions to the X-ray flux. The Doppler boosting factor estimated from the jet flux ranges from 1.6 to 2.2, consistent with the lower limit from the literature. 
    more » « less
  3. The X-ray polarization observations, made possible with the Imaging X-ray Polarimetry Explorer (IXPE), offer new ways of probing high-energy emission processes in astrophysical jets from blazars. Here, we report the first X-ray polarization observation of the blazar S4 0954+65 in a high optical and X-ray state. During our multi-wavelength (MWL) campaign of the source, we detected an optical flare whose peak coincided with the peak of an X-ray flare. This optical-X-ray flare most likely took place in a feature moving along the parsec-scale jet, imaged at 43 GHz by the Very Long Baseline Array (VLBA). The 43 GHz polarization angle of the moving component underwent a rotation near the time of the flare. In the optical band, prior to the IXPE observation, we measured the polarization angle to be aligned with the jet axis. In contrast, during the optical flare, the optical polarization angle was perpendicular to the jet axis; after the flare, it reverted to being parallel to the jet axis. Due to the smooth behavior of the optical polarization angle during the flare, we favor shocks as the main acceleration mechanism. We also infer that the ambient magnetic field lines in the jet were parallel to the jet position angle. The average degree of optical polarization during the IXPE observation was (14.3 ± 4.1)%. Despite the flare, we only detected an upper limit of 14% (at 3σlevel) on the X-ray polarization degree; however, a reasonable assumption on the X-ray polarization angle results in an upper limit of 8.8% (3σ). We modeled the spectral energy distribution (SED) and spectral polarization distribution (SPD) of S4 0954+65 with leptonic (synchrotron self-Compton) and hadronic (proton and pair synchrotron) models. Our combined MWL polarization observations and SED modeling tentatively disfavor the use of hadronic models for the X-ray emission in S4 0954+65. 
    more » « less
  4. Abstract A complete understanding of gamma-ray bursts (GRBs) has been difficult to achieve, due to our incomplete knowledge of the radiation mechanism that is responsible for producing the prompt emission. This emission, which is detected in the first tens of seconds of the GRB, is typically dominated by hard X-ray and gamma-ray photons, although there have also been a few dozen prompt optical detections. These optical detections have the potential to discriminate between plausible prompt emission models, such as the photospheric and synchrotron shock models. In this work, we use an improved MCRaT code, which includes cyclo-synchrotron emission and absorption, to conduct radiative transfer calculations from optical to gamma-ray energies under the photospheric model. The calculations are conducted using a set of two-dimensional relativistic hydrodynamic long GRB jet simulations, consisting of a constant and a variable jet. We predict the correlations between the optical and gamma-ray light curves as functions of observer angle and jet variability, and find that there should be extremely dim optical prompt precursors for large viewing angles. Additionally, the detected optical emission originates from dense regions of the outflow, such as shock interfaces and the jet-cocoon interface. Our results also show that the photospheric model is unable to account for the current set of optical prompt detections that have been made and therefore additional radiative mechanisms are needed to explain these prompt optical observations. These findings show the importance of conducting global radiative transfer simulations using hydrodynamically calculated jet structures. 
    more » « less
  5. Abstract The X-ray binary SS 433, embedded in the W 50 nebula (or supernova remnant W 50), shows bipolar jets that are ejected with mildly relativistic velocities and which extend toward the east and west out to scales of tens of parsecs. Previous X-ray observations revealed twin lobes along the jet precession axis that contain compact bright knots dominated by synchrotron radiation, which provide evidence of electron acceleration in this system. Particle acceleration in this system is substantiated by the recently detected gamma rays with energies up to at least 25 TeV. To elucidate the origin of the knots and particle acceleration sites in SS 433/W 50 further, we report here on detailed, spatially resolved X-ray spectroscopy of its western lobe with Chandra. We detect synchrotron emission along the jet precession axis, as well as optically thin thermal emission that is more spatially extended. Between the two previously known knots, w1 and w2, we discover another synchrotron knot, which we call w1.5. We find no significant synchrotron emission between SS 433 and the innermost X-ray knot (w1), suggesting that electrons only begin to be accelerated at w1. The X-ray spectra become gradually steeper from w1 to w2, and then rapidly so immediately outside of w2. Through comparison with a model taking into account electron transport and cooling along the jet, this result indicates that the magnetic field in w2 is substantially enhanced, which also explains its brightness. We discuss possible origins of the enhanced magnetic field of w2 as well as scenarios to explain the other two knots. 
    more » « less