skip to main content


Title: Human-machine-human interaction in motor control and rehabilitation: a review
Abstract Background

Human-human (HH) interaction mediated by machines (e.g., robots or passive sensorized devices), which we call human-machine-human (HMH) interaction, has been studied with increasing interest in the last decade. The use of machines allows the implementation of different forms of audiovisual and/or physical interaction in dyadic tasks. HMH interaction between two partners can improve the dyad’s ability to accomplish a joint motor task (task performance) beyond either partner’s ability to perform the task solo. It can also be used to more efficiently train an individual to improve their solo task performance (individual motor learning). We review recent research on the impact of HMH interaction on task performance and individual motor learning in the context of motor control and rehabilitation, and we propose future research directions in this area.

Methods

A systematic search was performed on the Scopus, IEEE Xplore, and PubMed databases. The search query was designed to find studies that involve HMH interaction in motor control and rehabilitation settings. Studies that do not investigate the effect of changing the interaction conditions were filtered out. Thirty-one studies met our inclusion criteria and were used in the qualitative synthesis.

Results

Studies are analyzed based on their results related to the effects of interaction type (e.g., audiovisual communication and/or physical interaction), interaction mode (collaborative, cooperative, co-active, and competitive), and partner characteristics. Visuo-physical interaction generally results in better dyadic task performance than visual interaction alone. In cases where the physical interaction between humans is described by a spring, there are conflicting results as to the effect of the stiffness of the spring. In terms of partner characteristics, having a more skilled partner improves dyadic task performance more than having a less skilled partner. However, conflicting results were observed in terms of individual motor learning.

Conclusions

Although it is difficult to draw clear conclusions as to which interaction type, mode, or partner characteristic may lead to optimal task performance or individual motor learning, these results show the possibility for improved outcomes through HMH interaction. Future work that focuses on selecting the optimal personalized interaction conditions and exploring their impact on rehabilitation settings may facilitate the transition of HMH training protocols to clinical implementations.

 
more » « less
Award ID(s):
2024488
NSF-PAR ID:
10361188
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of NeuroEngineering and Rehabilitation
Volume:
18
Issue:
1
ISSN:
1743-0003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Principles from human-human physical interaction may be necessary to design more intuitive and seamless robotic devices to aid human movement. Previous studies have shown that light touch can aid balance and that haptic communication can improve performance of physical tasks, but the effects of touch between two humans on walking balance has not been previously characterized. This study examines physical interaction between two persons when one person aids another in performing a beam-walking task. 12 pairs of healthy young adults held a force sensor with one hand while one person walked on a narrow balance beam (2 cm wide x 3.7 m long) and the other person walked overground by their side. We compare balance performance during partnered vs. solo beam-walking to examine the effects of haptic interaction, and we compare hand interaction mechanics during partnered beam-walking vs. overground walking to examine how the interaction aided balance. While holding the hand of a partner, participants were able to walk further on the beam without falling, reduce lateral sway, and decrease angular momentum in the frontal plane. We measured small hand force magnitudes (mean of 2.2 N laterally and 3.4 N vertically) that created opposing torque components about the beam axis and calculated the interaction torque, the overlapping opposing torque that does not contribute to motion of the beam-walker’s body. We found higher interaction torque magnitudes during partnered beam-walking vs . partnered overground walking, and correlation between interaction torque magnitude and reductions in lateral sway. To gain insight into feasible controller designs to emulate human-human physical interactions for aiding walking balance, we modeled the relationship between each torque component and motion of the beam-walker’s body as a mass-spring-damper system. Our model results show opposite types of mechanical elements (active vs . passive) for the two torque components. Our results demonstrate that hand interactions aid balance during partnered beam-walking by creating opposing torques that primarily serve haptic communication, and our model of the torques suggest control parameters for implementing human-human balance aid in human-robot interactions. 
    more » « less
  2. Background

    In Physical Human–Robot Interaction (pHRI), the need to learn the robot’s motor-control dynamics is associated with increased cognitive load. Eye-tracking metrics can help understand the dynamics of fluctuating mental workload over the course of learning.

    Objective

    The aim of this study was to test eye-tracking measures’ sensitivity and reliability to variations in task difficulty, as well as their performance-prediction capability, in physical human–robot collaboration tasks involving an industrial robot for object comanipulation.

    Methods

    Participants (9M, 9F) learned to coperform a virtual pick-and-place task with a bimanual robot over multiple trials. Joint stiffness of the robot was manipulated to increase motor-coordination demands. The psychometric properties of eye-tracking measures and their ability to predict performance was investigated.

    Results

    Stationary Gaze Entropy and pupil diameter were the most reliable and sensitive measures of workload associated with changes in task difficulty and learning. Increased task difficulty was more likely to result in a robot-monitoring strategy. Eye-tracking measures were able to predict the occurrence of success or failure in each trial with 70% sensitivity and 71% accuracy.

    Conclusion

    The sensitivity and reliability of eye-tracking measures was acceptable, although values were lower than those observed in cognitive domains. Measures of gaze behaviors indicative of visual monitoring strategies were most sensitive to task difficulty manipulations, and should be explored further for the pHRI domain where motor-control and internal-model formation will likely be strong contributors to workload.

    Application

    Future collaborative robots can adapt to human cognitive state and skill-level measured using eye-tracking measures of workload and visual attention.

     
    more » « less
  3. Abstract

    Human–exoskeleton interactions have the potential to bring about changes in human behavior for physical rehabilitation or skill augmentation. Despite significant advances in the design and control of these robots, their application to human training remains limited. The key obstacles to the design of such training paradigms are the prediction of human–exoskeleton interaction effects and the selection of interaction control to affect human behavior. In this article, we present a method to elucidate behavioral changes in the human–exoskeleton system and identify expert behaviors correlated with a task goal. Specifically, we observe the joint coordinations of the robot, also referred to as kinematic coordination behaviors, that emerge from human–exoskeleton interaction during learning. We demonstrate the use of kinematic coordination behaviors with two task domains through a set of three human-subject studies. We find that participants (1) learn novel tasks within the exoskeleton environment, (2) demonstrate similarity of coordination during successful movements within participants, (3) learn to leverage these coordination behaviors to maximize success within participants, and (4) tend to converge to similar coordinations for a given task strategy across participants. At a high level, we identify task-specific joint coordinations that are used by different experts for a given task goal. These coordinations can be quantified by observing experts and the similarity to these coordinations can act as a measure of learning over the course of training for novices. The observed expert coordinations may further be used in the design of adaptive robot interactions aimed at teaching a participant the expert behaviors.

     
    more » « less
  4. Abstract STUDY QUESTION

    Can we derive adequate models to predict the probability of conception among couples actively trying to conceive?

    SUMMARY ANSWER

    Leveraging data collected from female participants in a North American preconception cohort study, we developed models to predict pregnancy with performance of ∼70% in the area under the receiver operating characteristic curve (AUC).

    WHAT IS KNOWN ALREADY

    Earlier work has focused primarily on identifying individual risk factors for infertility. Several predictive models have been developed in subfertile populations, with relatively low discrimination (AUC: 59–64%).

    STUDY DESIGN, SIZE, DURATION

    Study participants were female, aged 21–45 years, residents of the USA or Canada, not using fertility treatment, and actively trying to conceive at enrollment (2013–2019). Participants completed a baseline questionnaire at enrollment and follow-up questionnaires every 2 months for up to 12 months or until conception. We used data from 4133 participants with no more than one menstrual cycle of pregnancy attempt at study entry.

    PARTICIPANTS/MATERIALS, SETTING, METHODS

    On the baseline questionnaire, participants reported data on sociodemographic factors, lifestyle and behavioral factors, diet quality, medical history and selected male partner characteristics. A total of 163 predictors were considered in this study. We implemented regularized logistic regression, support vector machines, neural networks and gradient boosted decision trees to derive models predicting the probability of pregnancy: (i) within fewer than 12 menstrual cycles of pregnancy attempt time (Model I), and (ii) within 6 menstrual cycles of pregnancy attempt time (Model II). Cox models were used to predict the probability of pregnancy within each menstrual cycle for up to 12 cycles of follow-up (Model III). We assessed model performance using the AUC and the weighted-F1 score for Models I and II, and the concordance index for Model III.

    MAIN RESULTS AND THE ROLE OF CHANCE

    Model I and II AUCs were 70% and 66%, respectively, in parsimonious models, and the concordance index for Model III was 63%. The predictors that were positively associated with pregnancy in all models were: having previously breastfed an infant and using multivitamins or folic acid supplements. The predictors that were inversely associated with pregnancy in all models were: female age, female BMI and history of infertility. Among nulligravid women with no history of infertility, the most important predictors were: female age, female BMI, male BMI, use of a fertility app, attempt time at study entry and perceived stress.

    LIMITATIONS, REASONS FOR CAUTION

    Reliance on self-reported predictor data could have introduced misclassification, which would likely be non-differential with respect to the pregnancy outcome given the prospective design. In addition, we cannot be certain that all relevant predictor variables were considered. Finally, though we validated the models using split-sample replication techniques, we did not conduct an external validation study.

    WIDER IMPLICATIONS OF THE FINDINGS

    Given a wide range of predictor data, machine learning algorithms can be leveraged to analyze epidemiologic data and predict the probability of conception with discrimination that exceeds earlier work.

    STUDY FUNDING/COMPETING INTEREST(S)

    The research was partially supported by the U.S. National Science Foundation (under grants DMS-1664644, CNS-1645681 and IIS-1914792) and the National Institutes for Health (under grants R01 GM135930 and UL54 TR004130). In the last 3 years, L.A.W. has received in-kind donations for primary data collection in PRESTO from FertilityFriend.com, Kindara.com, Sandstone Diagnostics and Swiss Precision Diagnostics. L.A.W. also serves as a fibroid consultant to AbbVie, Inc. The other authors declare no competing interests.

    TRIAL REGISTRATION NUMBER

    N/A.

     
    more » « less
  5. Abstract

    In the realm of robotics and automation, robot teleoperation, which facilitates human–machine interaction in distant or hazardous settings, has surged in significance. A persistent issue in this domain is the delays between command issuance and action execution, causing negative repercussions on operator situational awareness, performance, and cognitive load. These delays, particularly in long-distance operations, are difficult to mitigate even with the most advanced computing advancements. Current solutions mainly revolve around machine-based adjustments to combat these delays. However, a notable lacuna remains in harnessing human perceptions for an enhanced subjective teleoperation experience. This paper introduces a novel approach of sensory manipulation for induced human adaptation in delayed teleoperation. Drawing from motor learning and rehabilitation principles, it is posited that strategic sensory manipulation, via altered sensory stimuli, can mitigate the subjective feeling of these delays. The focus is not on introducing new skills or adapting to novel conditions; rather, it leverages prior motor coordination experience in the context of delays. The objective is to reduce the need for extensive training or sophisticated automation designs. A human-centered experiment involving 41 participants was conducted to examine the effects of modified haptic cues in teleoperations with delays. These cues were generated from high-fidelity physics engines using parameters from robot-end sensors or physics engine simulations. The results underscored several benefits, notably the considerable reduction in task time and enhanced user perceptions about visual delays. Real-time haptic feedback, or the anchoring method, emerged as a significant contributor to these benefits, showcasing reduced cognitive load, bolstered self-confidence, and minimized frustration. Beyond the prevalent methods of automation design and training, this research underscores induced human adaptation as a pivotal avenue in robot teleoperation. It seeks to enhance teleoperation efficacy through rapid human adaptation, offering insights beyond just optimizing robotic systems for delay compensations.

     
    more » « less