Abstract Therapeutic antibodies, due to their high affinity and specificity toward their biological targets, may demonstrate reduced harmful side effects compared with traditional drug moieties. While most of the as‐yet clinically approved antibody therapeutics have targeted extracellular or membrane‐bound domains, the ability to target intracellular antigens with antibodies opens up tremendous opportunities for imaging, diagnosis, and therapeutic applications. Generally, delivery concerns have limited the ability to target intracellular antigens, as many antibodies cannot easily cross the cell membrane due to their size and surface chemistry. Delivery platforms have been explored to address this issue, including physical methods, fusion protein/peptide techniques, and synthetic carrier‐based systems. This review summarizes the progress of carrier‐based intracellular antibody delivery systems employing synthetic lipids, polymers, and inorganic nanomaterials. Antibodies targeting various epitopes have been loaded through adsorption, conjugation, or physical encapsulation strategies. Successful intracellular deliveries have been demonstrated largely through fluorescence imaging using dye‐labeled antibody cargos. Specific synthetic delivery platforms have great potential for ex vivo and in vivo therapeutic applications. Challenges and opportunities are further discussed for material scientists to explore in this research area. 
                        more » 
                        « less   
                    
                            
                            Sonoporation: Past, Present, and Future
                        
                    
    
            Abstract A surge of research in intracellular delivery technologies is underway with the increased innovations in cell‐based therapies and cell reprogramming. Particularly, physical cell membrane permeabilization techniques are highlighted as the leading technologies because of their unique features, including versatility, independence of cargo properties, and high‐throughput delivery that is critical for providing the desired cell quantity for cell‐based therapies. Amongst the physical permeabilization methods, sonoporation holds great promise and demonstrates to deliver a variety of functional cargos, such as biomolecular drugs, proteins, and plasmids, to various cells including cancer, immune, and stem cells. However, traditional bubble‐based sonoporation methods usually require special contrast agents. Bubble‐based sonoporation methods also have high chances of inducing irreversible damage to critical cell components, lowering the cell viability, and reducing the effectiveness of delivered cargos. To overcome these limitations, several novel non‐bubble‐based sonoporation mechanisms are under development. This review will cover both the bubble‐based and non‐bubble‐based sonoporation mechanisms being employed for intracellular delivery, the technologies being investigated to overcome the limitations of traditional platforms, as well as perspectives on the future sonoporation mechanisms, technologies, and applications. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10361232
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Technologies
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2365-709X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract A high‐throughput non‐viral intracellular delivery platform is introduced for the transfection of large cargos with dosage‐control. This platform, termed Acoustic‐Electric Shear Orbiting Poration (AESOP), optimizes the delivery of intended cargo sizes with poration of the cell membranes via mechanical shear followed by the modulated expansion of these nanopores via electric field. Furthermore, AESOP utilizes acoustic microstreaming vortices wherein up to millions of cells are trapped and mixed uniformly with exogenous cargos, enabling the delivery of cargos into cells with targeted dosages. Intracellular delivery of a wide range of molecule sizes (<1 kDa to 2 MDa) with high efficiency (>90%), cell viability (>80%), and uniform dosages (<60% coefficient of variation (CV)) simultaneously into 1 million cells min−1per single chip is demonstrated. AESOP is successfully applied to two gene editing applications that require the delivery of large plasmids: i) enhanced green fluorescent protein (eGFP) plasmid (6.1 kbp) transfection, and ii) clustered regularly interspaced short palindromic repeats (CRISPR)‐Cas9‐mediated gene knockout using a 9.3 kbp plasmid DNA encoding Cas9 protein and single guide RNA (sgRNA). Compared to alternative platforms, this platform offers dosage‐controlled intracellular delivery of large plasmids simultaneously to large populations of cells while maintaining cell viability at comparable delivery efficiencies.more » « less
- 
            T-cell therapies are rapidly emerging for treatment of cancer and other diseases but are limited by inefficient non-viral delivery methods. Acoustofluidic devices are in development to enhance non-viral delivery to cells. The effect of acoustofluidic parameters, such as channel geometry, on molecular loading in human T cells was assessed using 3D-printed acoustofluidic devices. Devices with rectilinear channels (1- and 2-mm diameters) were compared directly with concentric spiral channel geometries. Intracellular delivery of a fluorescent dye (calcein, 100 lg/ml) was evaluated in Jurkat T cells using flow cytometry after ultrasound treatment with cationic microbubbles (2.5% v/v). B-mode ultrasound pulses (2.5 MHz, 3.8 MPa output pressure) were generated by a P4-1 transducer on a Verasonics Vantage ultrasound system. Cell viability was assessed using propidum iodine staining (10 lg/ml). Intracellular molecular delivery was significantly enhanced with acoustofluidic treatment in each channel geometry, but treatment with the 1-mm concentric spiral geometry further enhanced delivery after acoustofluidic treatment compared to both 1- and 2-mm rectilinear channels (ANOVA p < 0.001, n ¼ 6/group). These results indicate that 3Dprinted acoustofluidic devices enhance molecular delivery to T cells, and channel geometry modulates intracellular loading efficiency. This approach may offer advantages to improve manufacturing of T cell therapies.more » « less
- 
            Abstract In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow‐through microfluidics, engineered substrates, and automated probe‐based systems from the perspective of throughput and control. Special attention is paid to a particularly promising method of electroporation using micro/nanochannel based porous substrates, which expose small patches of cell membrane to permeabilizing electric field. Porous substrate electroporation parameters discussed include system design, cells and cargos used, transfection efficiency and cell viability, and the electric field and its effects on molecular transport. The review concludes with discussion of potential new innovations which can arise from specific aspects of porous substrate‐based electroporation platforms and high throughput, high control methods in general.more » « less
- 
            Extracellular vesicles (EVs) are 50–1000 nm membranous vesicles secreted from all cells that play important roles in many biological processes. Exosomes, a smaller-sized subset of EVs, have become of increasing interest in fundamental biochemistry and clinical fields due to their rich biological cargos and their roles in processes such as cell-signaling, maintaining homeostasis, and regulating cellular functions. To be implemented effectively in fundamental biochemistry and clinical diagnostics fields of study, and for their proposed use as vectors in gene therapies, there is a need for new methods for the isolation of large concentrations of high-purity exosomes from complex matrices in a timely manner. To address current limitations regarding recovery and purity, described here is a frontal throughput and recovery analysis of exosomes derived from human embryonic kidney (HEK) cell cultures and human urine specimens using capillary-channeled polymer (C-CP) fiber stationary phases via high performance liquid chromatography (HPLC). Using the C-CP fiber HPLC method for EV isolations, the challenge of recovering purified EVs from small sample volumes imparted by the traditional techniques was overcome while introducing significant benefits in processing, affordability (~5 $ per column), loading (~1012 particles), and recovery (1011–1012 particles) from whole specimens without further processing requirements.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
