skip to main content


Title: Machine learning-assisted high-throughput exploration of interface energy space in multi-phase-field model with CALPHAD potential
Abstract

Computational methods are increasingly being incorporated into the exploitation of microstructure–property relationships for microstructure-sensitive design of materials. In the present work, we propose non-intrusive materials informatics methods for the high-throughput exploration and analysis of a synthetic microstructure space using a machine learning-reinforced multi-phase-field modeling scheme. We specifically study the interface energy space as one of the most uncertain inputs in phase-field modeling and its impact on the shape and contact angle of a growing phase during heterogeneous solidification of secondary phase between solid and liquid phases. We evaluate and discuss methods for the study of sensitivity and propagation of uncertainty in these input parameters as reflected on the shape of the Cu6Sn5intermetallic during growth over the Cu substrate inside the liquid Sn solder due to uncertain interface energies. The sensitivity results rankσSI,σIL, andσIL, respectively, as the most influential parameters on the shape of the intermetallic. Furthermore, we use variational autoencoder, a deep generative neural network method, and label spreading, a semi-supervised machine learning method for establishing correlations between inputs of outputs of the computational model. We clustered the microstructures into three categories (“wetting”, “dewetting”, and “invariant”) using the label spreading method and compared it with the trend observed in the Young-Laplace equation. On the other hand, a structure map in the interface energy space is developed that showsσSIandσSLalter the shape of the intermetallic synchronously where an increase in the latter and decrease in the former changes the shape from dewetting structures to wetting structures. The study shows that the machine learning-reinforced phase-field method is a convenient approach to analyze microstructure design space in the framework of the ICME.

 
more » « less
Award ID(s):
2001333
NSF-PAR ID:
10361289
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Materials Theory
Volume:
6
Issue:
1
ISSN:
2509-8012
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Clathrates of Tetrel elements (Si, Ge, Sn) have attracted interest for their potential use in batteries and other applications. Sodium-filled silicon clathrates are conventionally synthesized through thermal decomposition of the Zintl precursor Na4Si4, but phase selectivity of the product is often difficult to achieve. Herein, we report the selective formation of the type I clathrate Na8Si46using electrochemical oxidation at 450 °C and 550 °C. A two-electrode cell design inspired by high-temperature sodium-sulfur batteries is employed, using Na4Si4as working electrode, Naβ″-alumina solid electrolyte, and counter electrode consisting of molten Na or Sn. Galvanostatic intermittent titration is implemented to observe the oxidation characteristics and reveals a relatively constant cell potential under quasi-equilibrium conditions, indicating a two-phase reaction between Na4Si4and Na8Si46. We further demonstrate that the product selection and morphology can be altered by tuning the reaction temperature and Na vapor pressure. Room temperature lithiation of the synthesized Na8Si46is evaluated for the first time, showing similar electrochemical characteristics to those in the type II clathrate Na24Si136. The results show that solid-state electrochemical oxidation of Zintl phases at high temperatures can lead to opportunities for more controlled crystal growth and a deeper understanding of the formation processes of intermetallic clathrates.

     
    more » « less
  2. Abstract

    The metallic tin (Sn) anode is a promising candidate for next‐generation lithium‐ion batteries (LIBs) due to its high theoretical capacity and electrical conductivity. However, Sn suffers from severe mechanical degradation caused by large volume changes during lithiation/delithiation, which leads to a rapid capacity decay for LIBs application. Herein, a Cu–Sn (e.g., Cu3Sn) intermetallic coating layer (ICL) is rationally designed to stabilize Sn through a structural reconstruction mechanism. The low activity of the Cu–Sn ICL against lithiation/delithiation enables the gradual separation of the metallic Cu phase from the Cu–Sn ICL, which provides a regulatable and appropriate distribution of Cu to buffer volume change of Sn anode. Concurrently, the homogeneous distribution of the separated Sn together with Cu promotes uniform lithiation/delithiation, mitigating the internal stress. In addition, the residual rigid Cu–Sn intermetallic shows terrific mechanical integrity that resists the plastic deformation during the lithiation/delithiation. As a result, the Sn anode enhanced by the Cu–Sn ICL shows a significant improvement in cycling stability with a dramatically reduced capacity decay rate of 0.03% per cycle for 1000 cycles. The structural reconstruction mechanism in this work shines a light on new materials and structural design that can stabilize high‐performance and high‐volume‐change electrodes for rechargeable batteries and beyond.

     
    more » « less
  3. Solid solutions of Mg 2 Si and Mg 2 Sn are promising thermoelectric materials owing to their high thermoelectric figures-of-merit and non-toxicity, but they may undergo phase separation under thermal cycling due to the presence of miscibility gaps, implying that the thermoelectric properties could be significantly degraded during thermoelectric device operation. Herein, this study investigates the strain-induced suppression of the miscibility gap in solid solutions of Mg 2 Si and Mg 2 Sn. Separately prepared Mg 2 Si and Mg 2 Sn powders were made into (Mg 2 Si) 0.7 (Mg 2 Sn) 0.3 mixtures using a high energy ball-milling method followed by spark plasma sintering. Afterwards, the phase evolution of the mixtures, depending on thermal annealing and mixing conditions, was studied experimentally and theoretically. Transmission electron microscopy and X-ray diffraction results show that, despite the presence of a miscibility gap in the pseudo-binary phase diagram, the initial mixture of Mg 2 Si and Mg 2 Sn evolved towards a solid solution state after annealing for 3 hours at 720 °C. Thermodynamic analysis as well as phase-field microstructure simulations show that the strain energy due to the coherent spinodal effect suppresses the chemical spinodal entirely and prevents phase separation. This strategy to suppress the miscibility gap induced by lattice strain through non-equilibrium processing can benefit the thermoelectric figure-of-merit by maximizing phonon alloy scattering. Furthermore, stable solid solutions by engineering phase diagrams have the potential to facilitate the reliable long term operation of thermoelectric generators under continuous thermal loads. 
    more » « less
  4. Summary Lay Description

    Asphalt binder, or bitumen, is the glue that holds aggregate particles together to form a road surface. It is derived from the heavy residue that remains after distilling gasoline, diesel and other lighter products out of crude oil. Nevertheless, bitumen varies widely in composition and mechanical properties. To avoid expensive road failures, bitumen must be processed after distillation so that its mechanical properties satisfy diverse climate and load requirements. International standards now guide these mechanical properties, but yield varying long‐term performance as local source composition and preparation methods vary.In situdiagnostic methods that can predict bitumen performance independently of processing history are therefore needed. The present work focuses on one promising diagnostic candidate: microscopic observation of internal bitumen structure. Past bitumen microscopy has revealed microstructures of widely varying composition, size, shape and density. A challenge is distinguishing bulk microstructures, which directly influence a binder's mechanical properties, from surface microstructures, which often dominate optical microscopy because of bitumen's opacity and scanning‐probe microscopy because of its inherent surface specificity. In previously published work, we used infrared microscopy to enhance visibility of bulk microstructure. Here, as a foil to this work, we use visible‐wavelength microscopy together with atomic‐force microscopy (AFM) specifically to isolatesurfacemicrostructure, to understand its distinct origin and morphology, and to demonstrate its unique sensitivity to surface alterations. To this end, optical microscopy complements AFM by enabling us to observe surface microstructures form at temperatures (50°C–70°C) at which bitumen's fluidity prevents AFM, and to observe surface microstructure beneath transparent, but chemically inert, liquid (glycerol) and solid (glass) overlayers, which alter surface tension compared to free surfaces. From this study, we learned, first, that, as bitumen cools, distinctly wrinkled surface microstructures form at the same temperature at which independent calorimetric studies showed crystallization in bitumen, causing it to release latent heat of crystallization. This shows that surface microstructures are likely precipitates of the crystallizable component(s). Second, a glycerol overlayer on the cooling bitumen results in smaller, less wrinkled, sparser microstructures, whereas a glass overlayer suppresses them altogether. In contrast, underlying smaller bulk microstructures are unaffected. This shows that surface tension is the driving force behind formation and wrinkling of surface precipitates. Taken together, the work advances our ability to diagnose bitumen samples noninvasively by clearly distinguishing surface from bulk microstructure.

     
    more » « less
  5. A method to predict sub-filter shear-induced velocities on a liquid-gas phase interface for use in a dual scale LES model is presented and compared against prior work on Vortex Sheet methods. The method reconstructs the sub-filter velocity field in the vicinity of the interface by employing a vortex sheet at the interface location. The vortex sheet is transported by an unsplit geometric volume and surface area advection scheme with a Piecewise Linear Interface Construction (PLIC) representation of the material interface. At each step, the vorticity field is constructed by evaluating a volume integral of the vortex sheet and a numerical spreading parameter near the liquid-gas interface. A Poisson equation can then be constructed and solved for the vector potential; the self-induced velocities due to the vortex sheet are subsequently evaluated from the vector potential. The described vortex sheet method is tested and compared against prior literature. 
    more » « less