Rice resistance (R) genes have been effectively deployed to prevent blast disease caused by the fungal pathogen Magnaporthe oryzae, one of the most serious threats for stable rice production worldwide. Weedy rice competing with cultivated rice may carry novel or lost R genes. The quantitative trait locus qBR12.3b was previously mapped between two single nucleotide polymorphism markers at the 10,633,942-bp and 10,820,033-bp genomic positions in a black-hull-awned (BHA) weed strain using a weed-crop-mapping population under greenhouse conditions. In this study, we found a portion of the known resistance gene Ptr encoding a protein with four armadillo repeats and confers a broad spectrum of blast resistance. We then analyzed the sequences of the Ptr gene from weedy rice, PtrBHA, and identified a unique amino acid glutamine at protein position 874. Minor changes of protein conformation of the PtrBHAgene were predicted through structural analysis of PtrBHA, suggesting that the product of PtrBHAis involved in disease resistance. A gene-specific codominant marker HJ17-13 from PtrBHAwas then developed to distinguish alleles in weeds and crops. The PtrBHAgene existed in 207 individuals of the same mapping population, where qBR12.3b was mapped using this gene-specific marker. Disease reactions of 207 individuals and their parents to IB-33 were evaluated. The resistant individuals had PtrBHAwhereas the susceptible individuals did not, suggesting that HJ17-13 is reliable to predict qBR12.3b. Taken together, this newly developed marker, and weedy rice genotypes carrying qBR12.3b, are useful for blast improvement using marker assisted selection.
more »
« less
Registration of two rice mapping populations using weedy rice ecotypes as a novel germplasm resource
Abstract Two mapping populations were developed from crosses of the Asianindicarice (Oryza sativaL.) cultivar ‘Dee Geo Woo Gen’ (DGWG; PI 699210 Parent, PI 699212 Parent) and two weedy rice ecotypes, an early‐flowering straw hull (SH) biotype AR‐2000‐1135‐01 (PI 699209 Parent) collected in Arkansas and a late‐flowering black hull (BHA) biotype MS‐1996‐9 (PI 699211 Parent) collected in Mississippi. The weed and crop‐based rice recombinant inbred line (RIL) mapping populations have been used to identify genomic regions associated with weedy traits as well as resistance to sheath blight and rice blast diseases. The mapping population consists of 185 (DGWG/SH; Reg. no. MP‐9, NSL 541035 MAP) and 234 (BHA/DGWG; Reg. no. MP‐10, NSL 541036 MAP) F8RILs, of which 175 (DGWG/SH) and 224 (BHA/DGWG) were used to construct two linkage maps using single nucleotide polymorphic markers to identify weedy traits, sheath blight, and blast resistance loci. These mapping populations and related datasets represent a valuable resource for basic rice evolutionary genomic research and applied marker‐assisted breeding efforts in disease resistance.
more »
« less
- Award ID(s):
- 1947609
- PAR ID:
- 10361296
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Plant Registrations
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 1936-5209
- Format(s):
- Medium: X Size: p. 162-175
- Size(s):
- p. 162-175
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Weedy rice (Oryzaspp.) is a weedy relative of the cultivated rice that competes with the crop and causes significant production loss. The BHA (blackhull awned) US weedy rice group has evolved fromauscultivated rice and differs from its ancestors in several important weediness traits, including flowering time, plant height and seed shattering. Prior attempts to determine the genetic basis of weediness traits in plants using linkage mapping approaches have not often considered weed origins. However, the timing of divergence between crossed parents can affect the detection of quantitative trait loci (QTL) relevant to the evolution of weediness. Here, we used a QTL‐seq approach that combines bulked segregant analysis and high‐throughput whole genome resequencing to map the three important weediness traits in an F2population derived from a cross between BHA weedy rice with an ancestralauscultivar. We compared these QTLs with those previously detected in a cross of BHA with a more distantly related crop,indica. We identified multiple QTLs that overlapped with regions under selection during the evolution of weedy BHA rice and some candidate genes possibly underlying the evolution weediness traits in BHA. We showed that QTLs detected with ancestor–descendant crosses are more likely to be involved in the evolution of weediness traits than those detected from crosses of more diverged taxa.more » « less
-
Weeds that infest crops are a primary factor limiting agricultural productivity worldwide. Weedy rice, also called red rice, has experienced independent evolutionary events through gene flow from wild rice relatives and de-domestication from cultivated rice. Each evolutionary event supplied/equipped weedy rice with competitive abilities that allowed it to thrive with cultivated rice and severely reduce yields in rice fields. Understanding how competitiveness evolves is important not only for noxious agricultural weed management but also for the transfer of weedy rice traits to cultivated rice. Molecular studies of weedy rice using simple sequence repeat (SSR), restriction fragment length polymorphism (RFLP), and whole-genome sequence have shown great genetic variations in weedy rice populations globally. These variations are evident both at the whole-genome and at the single-allele level, including Sh4 (shattering), Hd1 (heading and flowering), and Rc (pericarp pigmentation). The goal of this review is to describe the genetic diversity of current weedy rice germplasm and the significance of weedy rice germplasm as a novel source of disease resistance. Understanding these variations, especially at an allelic level, is also crucial as individual loci that control important traits can be of great target to rice breeders.more » « less
-
SUMMARY The repeated evolution of high seed shattering during multiple independent de‐domestications of cultivated Asian rice (Oryza sativa) into weedy rice (Oryzaspp.) is a prime example of convergent evolution. Weedy rice populations converge in histological features of the abscission zone (AZ), a crucial structure for seed abscission, while ancestral cultivated rice populations exhibit varied AZ morphology and levels of shattering. However, the genetic bases of these phenotypic patterns remain unclear. We examined the expression profiles of the AZ region and its surrounding tissues at three developmental stages in two low‐shattering cultivars ofausandtemperate japonicadomesticated groups and in two genotypes of their derived high‐shattering weed groups, Blackhull Awned (BHA) and Spanish Weedy Rice (SWR), respectively. Consistent with the greater alteration of AZ morphology during the de‐domestication of SWR than BHA, fewer genes exhibited a comparable AZ‐region exclusive expression pattern between weed and crop in thetemperate japonicalineage than in theauslineage. Transcription factors related to the repression of lignin and secondary cell wall deposition, such as,OsWRKY102andOsXND‐1‐like, along with certain known shattering genes involved in AZ formation, likely played a role in maintaining AZ region identity in both lineages. Meanwhile, most genes exhibiting AZ‐region exclusive expression patterns do not overlap between the two lineages and the genes exhibiting differential expression in the AZ region between weed and crop across the two lineages are enriched for different gene ontology terms. Our findings suggest genetic flexibility in shaping AZ morphology, while genetic constraints on AZ identity determination in these two lineages.more » « less
-
Abstract Weedy rice is a close relative of cultivated rice that devastates rice productivity worldwide. In the southern United States, two distinct strains have been historically predominant, but the 21stcentury introduction of hybrid rice and herbicide resistant rice technologies has dramatically altered the weedy rice selective landscape. Here, we use whole-genome sequences of 48 contemporary weedy rice accessions to investigate the genomic consequences of crop-weed hybridization and selection for herbicide resistance. We find that population dynamics have shifted such that most contemporary weeds are now crop-weed hybrid derivatives, and that their genomes have subsequently evolved to be more like their weedy ancestors. Haplotype analysis reveals extensive adaptive introgression of cultivated alleles at the resistance geneALS, but also uncovers evidence for convergent molecular evolution in accessions with no signs of hybrid origin. The results of this study suggest a new era of weedy rice evolution in the United States.more » « less
An official website of the United States government
