skip to main content


Title: Universal annotation of the human genome through integration of over a thousand epigenomic datasets
Abstract Background

Genome-wide maps of chromatin marks such as histone modifications and open chromatin sites provide valuable information for annotating the non-coding genome, including identifying regulatory elements. Computational approaches such as ChromHMM have been applied to discover and annotate chromatin states defined by combinatorial and spatial patterns of chromatin marks within the same cell type. An alternative “stacked modeling” approach was previously suggested, where chromatin states are defined jointly from datasets of multiple cell types to produce a single universal genome annotation based on all datasets. Despite its potential benefits for applications that are not specific to one cell type, such an approach was previously applied only for small-scale specialized purposes. Large-scale applications of stacked modeling have previously posed scalability challenges.

Results

Using a version of ChromHMM enhanced for large-scale applications, we apply the stacked modeling approach to produce a universal chromatin state annotation of the human genome using over 1000 datasets from more than 100 cell types, with the learned model denoted as the full-stack model. The full-stack model states show distinct enrichments for external genomic annotations, which we use in characterizing each state. Compared to per-cell-type annotations, the full-stack annotations directly differentiate constitutive from cell type-specific activity and is more predictive of locations of external genomic annotations.

Conclusions

The full-stack ChromHMM model provides a universal chromatin state annotation of the genome and a unified global view of over 1000 datasets. We expect this to be a useful resource that complements existing per-cell-type annotations for studying the non-coding human genome.

 
more » « less
Award ID(s):
2125664
NSF-PAR ID:
10361332
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Genome Biology
Volume:
23
Issue:
1
ISSN:
1474-760X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A large-scale application of the “stacked modeling” approach for chromatin state discovery previously provides a single “universal” chromatin state annotation of thehumangenome based jointly on data from many cell and tissue types. Here, we produce an analogous chromatin state annotation formousebased on 901 datasets assaying 14 chromatin marks in 26 cell or tissue types. To characterize each chromatin state, we relate the states to external annotations and compare them to analogously definedhumanstates. We expect the universal chromatin state annotation formouseto be a useful resource for studying this key model organism’s genome.

     
    more » « less
  2. Abstract Motivation

    Genome-wide maps of epigenetic modifications are powerful resources for non-coding genome annotation. Maps of multiple epigenetics marks have been integrated into cell or tissue type-specific chromatin state annotations for many cell or tissue types. With the increasing availability of multiple chromatin state maps for biologically similar samples, there is a need for methods that can effectively summarize the information about chromatin state annotations within groups of samples and identify differences across groups of samples at a high resolution.

    Results

    We developed CSREP, which takes as input chromatin state annotations for a group of samples. CSREP then probabilistically estimates the state at each genomic position and derives a representative chromatin state map for the group. CSREP uses an ensemble of multi-class logistic regression classifiers that predict the chromatin state assignment of each sample given the state maps from all other samples. The difference in CSREP’s probability assignments for the two groups can be used to identify genomic locations with differential chromatin state assignments. Using groups of chromatin state maps of a diverse set of cell and tissue types, we demonstrate the advantages of using CSREP to summarize chromatin state maps and identify biologically relevant differences between groups at a high resolution.

    Availability and implementation

    The CSREP source code and generated data are available at http://github.com/ernstlab/csrep.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Abstract Background

    Predicting cis-regulatory modules (CRMs) in a genome and their functional states in various cell/tissue types of the organism are two related challenging computational tasks. Most current methods attempt to simultaneously achieve both using data of multiple epigenetic marks in a cell/tissue type. Though conceptually attractive, they suffer high false discovery rates and limited applications. To fill the gaps, we proposed a two-step strategy to first predict a map of CRMs in the genome, and then predict functional states of all the CRMs in various cell/tissue types of the organism. We have recently developed an algorithm for the first step that was able to more accurately and completely predict CRMs in a genome than existing methods by integrating numerous transcription factor ChIP-seq datasets in the organism. Here, we presented machine-learning methods for the second step.

    Results

    We showed that functional states in a cell/tissue type of all the CRMs in the genome could be accurately predicted using data of only 1~4 epigenetic marks by a variety of machine-learning classifiers. Our predictions are substantially more accurate than the best achieved so far. Interestingly, a model trained on a cell/tissue type in humans can accurately predict functional states of CRMs in different cell/tissue types of humans as well as of mice, and vice versa. Therefore, epigenetic code that defines functional states of CRMs in various cell/tissue types is universal at least in humans and mice. Moreover, we found that from tens to hundreds of thousands of CRMs were active in a human and mouse cell/tissue type, and up to 99.98% of them were reutilized in different cell/tissue types, while as small as 0.02% of them were unique to a cell/tissue type that might define the cell/tissue type.

    Conclusions

    Our two-step approach can accurately predict functional states in any cell/tissue type of all the CRMs in the genome using data of only 1~4 epigenetic marks. Our approach is also more cost-effective than existing methods that typically use data of more epigenetic marks. Our results suggest common epigenetic rules for defining functional states of CRMs in various cell/tissue types in humans and mice.

     
    more » « less
  4. Abstract

    Higher-order genome organization and its variation in different cellular conditions remain poorly understood. Recent high-coverage genome-wide chromatin interaction mapping using Hi-C has revealed spatial segregation of chromosomes in the human genome into distinct subcompartments. However, subcompartment annotation, which requires Hi-C data with high sequencing coverage, is currently only available in the GM12878 cell line, making it impractical to compare subcompartment patterns across cell types. Here we develop a computational approach, SNIPER (Subcompartment iNference using Imputed Probabilistic ExpRessions), based on denoising autoencoder and multilayer perceptron classifier to infer subcompartments using typical Hi-C datasets with moderate coverage. SNIPER accurately reveals subcompartments using moderate coverage Hi-C datasets and outperforms an existing method that uses epigenomic features in GM12878. We apply SNIPER to eight additional cell lines and find that chromosomal regions with conserved and cell-type specific subcompartment annotations have different patterns of functional genomic features. SNIPER enables the identification of subcompartments without high-coverage Hi-C data and provides insights into the function and mechanisms of spatial genome organization variation across cell types.

     
    more » « less
  5. Abstract Background

    Crop improvement through cross-population genomic prediction and genome editing requires identification of causal variants at high resolution, within fewer than hundreds of base pairs. Most genetic mapping studies have generally lacked such resolution. In contrast, evolutionary approaches can detect genetic effects at high resolution, but they are limited by shifting selection, missing data, and low depth of multiple-sequence alignments. Here we use genomic annotations to accurately predict nucleotide conservation across angiosperms, as a proxy for fitness effect of mutations.

    Results

    Using only sequence analysis, we annotate nonsynonymous mutations in 25,824 maize gene models, with information from bioinformatics and deep learning. Our predictions are validated by experimental information: within-species conservation, chromatin accessibility, and gene expression. According to gene ontology and pathway enrichment analyses, predicted nucleotide conservation points to genes in central carbon metabolism. Importantly, it improves genomic prediction for fitness-related traits such as grain yield, in elite maize panels, by stringent prioritization of fewer than 1% of single-site variants.

    Conclusions

    Our results suggest that predicting nucleotide conservation across angiosperms may effectively prioritize sites most likely to impact fitness-related traits in crops, without being limited by shifting selection, missing data, and low depth of multiple-sequence alignments. Our approach—Prediction of mutation Impact by Calibrated Nucleotide Conservation (PICNC)—could be useful to select polymorphisms for accurate genomic prediction, and candidate mutations for efficient base editing. The trained PICNC models and predicted nucleotide conservation at protein-coding SNPs in maize are publicly available in CyVerse (https://doi.org/10.25739/hybz-2957).

     
    more » « less