Neural, physiological, and behavioral signals synchronize between human subjects in a variety of settings. Multiple hypotheses have been proposed to explain this interpersonal synchrony, but there is no clarity under which conditions it arises, for which signals, or whether there is a common underlying mechanism. We hypothesized that cognitive processing of a shared stimulus is the source of synchrony between subjects, measured here as intersubject correlation (ISC). To test this, we presented informative videos to participants in an attentive and distracted condition and subsequently measured information recall. ISC was observed for electro-encephalography, gaze position, pupil size, and heart rate, but not respiration and head movements. The strength of correlation was co-modulated in the different signals, changed with attentional state, and predicted subsequent recall of information presented in the videos. There was robust within-subject coupling between brain, heart, and eyes, but not respiration or head movements. The results suggest that ISC is the result of effective cognitive processing, and thus emerges only for those signals that exhibit a robust brain–body connection. While physiological and behavioral fluctuations may be driven by multiple features of the stimulus, correlation with other individuals is co-modulated by the level of attentional engagement with the stimulus.
- Award ID(s):
- 1816363
- Publication Date:
- NSF-PAR ID:
- 10361339
- Journal Name:
- Journal of Neural Engineering
- Volume:
- 18
- Issue:
- 6
- Page Range or eLocation-ID:
- Article No. 066052
- ISSN:
- 1741-2560
- Publisher:
- IOP Publishing
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Li-Jessen, Nicole Yee-Key (Ed.)The Earable device is a behind-the-ear wearable originally developed to measure cognitive function. Since Earable measures electroencephalography (EEG), electromyography (EMG), and electrooculography (EOG), it may also have the potential to objectively quantify facial muscle and eye movement activities relevant in the assessment of neuromuscular disorders. As an initial step to developing a digital assessment in neuromuscular disorders, a pilot study was conducted to determine whether the Earable device could be utilized to objectively measure facial muscle and eye movements intended to be representative of Performance Outcome Assessments, (PerfOs) with tasks designed to model clinical PerfOs, referred to as mock-PerfO activities. The specific aims of this study were: To determine whether the Earable raw EMG, EOG, and EEG signals could be processed to extract features describing these waveforms; To determine Earable feature data quality, test re-test reliability, and statistical properties; To determine whether features derived from Earable could be used to determine the difference between various facial muscle and eye movement activities; and, To determine what features and feature types are important for mock-PerfO activity level classification. A total of N = 10 healthy volunteers participated in the study. Each study participant performed 16 mock-PerfOs activities, including talking, chewing, swallowing, eyemore »
-
Opioid use disorder is a medical condition with major social and economic consequences. While ubiquitous physiological sensing technologies have been widely adopted and extensively used to monitor day-to-day activities and deliver targeted interventions to improve human health, the use of these technologies to detect drug use in natural environments has been largely underexplored. The long-term goal of our work is to develop a mobile technology system that can identify high-risk opioid-related events (i.e., development of tolerance in the setting of prescription opioid use, return-to-use events in the setting of opioid use disorder) and deploy just-in-time interventions to mitigate the risk of overdose morbidity and mortality. In the current paper, we take an initial step by asking a crucial question: Can opioid use be detected using physiological signals obtained from a wrist-mounted sensor? Thirty-six individuals who were admitted to the hospital for an acute painful condition and received opioid analgesics as part of their clinical care were enrolled. Subjects wore a noninvasive wrist sensor during this time (1-14 days) that continuously measured physiological signals (heart rate, skin temperature, accelerometry, electrodermal activity, and interbeat interval). We collected a total of 2070 hours (≈ 86 days) of physiological data and observed a totalmore »
-
Owing to the increasing complexity of construction tasks and operations performed in confined workplaces, workers rely progressively on working memory, i.e., the short-term and temporary storage of information pertaining to near future events, to ensure the seamless execution of construction tasks. Although literature has discovered a strong relationship between engineering information formats and the quality of working memory, there is still a clear theoretical disagreement on the implications of the complexity of engineering information in the development of working memory. This study addresses the knowledge gap with a human-subject experiment (n=60). Participants were required to review one of the two instructions for a pipe maintenance task: a simple 2D isometric drawing with bulletins (2D-simple) and a complex 2D isometric drawing with rich text (2D-complex). After the review session, the participants were asked to perform the pipe maintenance task in a Virtual Reality (VR) environment. Collected data include participants’ task performance (accuracy and time), pupillary dilations and gaze movements. The results show that the 2D-simple group outperformed the 2D-complex group in terms of both accuracy and time. An attention pattern analysis using Approximate Entropy (ApEn) of gaze movements suggests that a higher ApEn in the vertical axis, i.e. a more irregularmore »
-
Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)The Neural Engineering Data Consortium has recently developed a new subset of its popular open source EEG corpus – TUH EEG (TUEG) [1]. The TUEG Corpus is the world’s largest open source corpus of EEG data and currently has over 3,300 subscribers. There are several valuable subsets of this data, including the TUH Seizure Detection Corpus (TUSZ) [2], which was featured in the Neureka 2020 Epilepsy Challenge [3]. In this poster, we present a new subset of the TUEG Corpus – the TU Artifact Corpus. This corpus contains 310 EEG files in which every artifact has been annotated. This data can be used to evaluate artifact reduction technology. Since TUEG is comprised of actual clinical data, the set of artifacts appearing in the data is rich and challenging. EEG artifacts are defined as waveforms that are not of cerebral origin and may be affected by numerous external and or physiological factors. These extraneous signals are often mistaken for seizures due to their morphological similarity in amplitude and frequency [4]. Artifacts often lead to raised false alarm rates in machine learning systems, which poses a major challenge for machine learning research. Most state-of-the-art systems use some form of artifact reduction technologymore »