Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) are crucial for constraining the properties of their progenitor systems. Theoretical studies predicted that the UV spectra, which probe the outermost layers of an SN, should be sensitive to the metal content of the progenitor. Using the largest SN Ia UV (λ < 2900 Å) spectroscopic sample obtained from Neil Gehrels Swift Observatory, we investigate the dependence of UV spectra on metallicity. For the first time, our results reveal a correlation (∼2σ) between SN Ia UV flux and host-galaxy metallicities, with SNe in more metal-rich galaxies (which are likely to have higher progenitor metallicities) having lower UV flux level. We find that this metallicity effect is only significant at short wavelengths (λ ≲ 2700 Å), which agrees well with the theoretical predictions. We produce UV spectral templates for SNe Ia at peak brightness. With our sample, we could disentangle the effect of light-curve shape and metallicity on the UV spectra. We also examine the correlation between the UV spectra and SN luminosities as parametrized by Hubble residuals. However, we do not see a significant trend with Hubble residuals. This is probably due to the large uncertainties in SN distances, as the majoritymore »
Type Ia supernovae (SNe Ia) in the nearby Hubble flow are excellent distance indicators in cosmology. The Zwicky Transient Facility (ZTF) has observed a large sample of SNe from an untargeted, rolling survey, reaching 20.8, 20.6, and 20.3 mag in g r, and i band, respectively. With an FoV of 47 deg2, ZTF discovered > 3000 SNe Ia in a little over 2.5 yr. Here, we report on the sample of 761 spectroscopically classified SNe Ia from the first year of operations (DR1). The sample has a median redshift $\bar{z} =$ 0.057, nearly a factor of 2 higher than the current low-z sample. Our sample has a total of 934 spectra, of which 632 were obtained with the robotic SEDm on Palomar P60. We assess the potential for precision cosmology for a total of 305 SNe with redshifts from host galaxy spectra. The sample is already comparable in size to the entire combined literature low-z anchor sample. The median first detection is 13.5 d before maximum light, about 10 d earlier than the median in the literature. Furthermore, six SNe from our sample are at DL < 80 Mpc, for which host galaxy distances can be obtained in the JAMES WEBB SPACE TELESCOPE era, such more »
- Publication Date:
- NSF-PAR ID:
- 10361366
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 510
- Issue:
- 2
- Page Range or eLocation-ID:
- p. 2228-2241
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Using Zwicky Transient Facility (ZTF) observations, we identify a pair of "sibling" Type Ia supernovae (SNe Ia), i.e., hosted by the same galaxy at z = 0.0541. They exploded within 200 days from each other at a separation of 0.6″ corresponding to a projected distance of only 0.6 kpc. Performing SALT2 light curve fits to the gri ZTF photometry, we show that for these equally distant "standardizable candles", there is a difference of 2 magnitudes in their rest frame B-band peaks, and the fainter SN has a significantly red SALT2 colour c=0.57± 0.04, while the stretch values x1 of the two SNe are similar, suggesting that the fainter SN is attenuated by dust in the interstellar medium of the host galaxy. We use these measurements to infer the SALT2 colour standardization parameter, β = 3.5 ± 0.3, independent of the underlying cosmology and Malmquist bias. Assuming the colour excess is entirely due to dust, the result differs by 2σ from the average Milky-Way total-to-selective extinction ratio, but is in good agreement with the colour-brightness corrections empirically derived from the most recent SN Ia Hubble-Lemaitre diagram fits. Thus we suggest that SN "siblings", which will increasingly be discovered in the comingmore »
-
We present a new calibration of the peak absolute magnitude of Type Ia supernovae (SNe Ia) based on the surface brightness fluctuations (SBF) method, aimed at measuring the value of the Hubble constant. We build a sample of calibrating anchors consisting of 24 SNe hosted in galaxies that have SBF distance measurements. Applying a hierarchical Bayesian approach, we calibrate the SN Ia peak luminosity and extend the Hubble diagram into the Hubble flow by using a sample of 96 SNe Ia in the redshift range 0.02 < z < 0.075, which was extracted from the Combined Pantheon Sample. We estimate a value of H 0 = 70.50 ± 2.37 (stat.) ± 3.38 (sys.) km s −1 Mpc −1 (i.e., 3.4% stat., 4.8% sys.), which is in agreement with the value obtained using the tip of the red giant branch calibration. It is also consistent, within errors, with the value obtained from SNe Ia calibrated with Cepheids or the value inferred from the analysis of the cosmic microwave background. We find that the SNe Ia distance moduli calibrated with SBF are on average larger by 0.07 mag than those calibrated with Cepheids. Our results point to possible differences among SNe in different types of galaxies, which could originate from differentmore »
-
ABSTRACT After correcting for their light-curve shape and colour, Type Ia supernovae (SNe Ia) are precise cosmological distance indicators. However, there remains a non-zero intrinsic scatter in the differences between measured distance and that inferred from a cosmological model (i.e. Hubble residuals or HRs), indicating that SN Ia distances can potentially be further improved. We use the open-source relational data base kaepora to generate composite spectra with desired average properties of phase, light-curve shape, and HR. At many phases, the composite spectra from two subsamples with positive and negative average HRs are significantly different. In particular, in all spectra from 9 d before to 15 d after peak brightness, we find that SNe with negative HRs have, on average, higher ejecta velocities (as seen in nearly every optical spectral feature) than SNe with positive HRs. At +4 d relative to B-band maximum, using a sample of 62 SNe Ia, we measure a 0.091 ± 0.035 mag (2.7σ) HR step between SNe with Si ii λ6355 line velocities ($v_{Si\, rm{\small II}}$) higher/lower than −11 000 km s−1 (the median velocity). After light-curve shape and colour correction, SNe with higher velocities tend to have underestimated distance moduli relative to a cosmological model. The intrinsic scatter in our sample reduces from 0.094 to 0.082 mag after making thismore »
-
Abstract Current and future cosmological analyses with Type Ia supernovae (SNe Ia) face three critical challenges: (i) measuring the redshifts from the SNe or their host galaxies; (ii) classifying the SNe without spectra; and (iii) accounting for correlations between the properties of SNe Ia and their host galaxies. We present here a novel approach that addresses each of these challenges. In the context of the Dark Energy Survey (DES), we analyze an SN Ia sample with host galaxies in the redMaGiC galaxy catalog, a selection of luminous red galaxies. redMaGiC photo-
z estimates are expected to be accurate toσ Δz /(1+z )∼ 0.02. The DES-5YR photometrically classified SN Ia sample contains approximately 1600 SNe, and 125 of these SNe are in redMaGiC galaxies. We demonstrate that redMaGiC galaxies almost exclusively host SNe Ia, reducing concerns relating to classification uncertainties. With this subsample, we find similar Hubble scatter (to within ∼0.01 mag) using photometric redshifts in place of spectroscopic redshifts. With detailed simulations, we show that the bias due to using redMaGiC photo-z s on the measurement of the dark energy equation of statew is up to Δw ∼ 0.01–0.02. With real data, we measure a difference inw when using the redMaGiC photo-z s versus the spec-z s of Δw = 0.005. Finally,more »