skip to main content


Title: Two c's in a pod: Cosmology independent measurement of the Type Ia supernova colour-luminosity relation with a sibling pair
Using Zwicky Transient Facility (ZTF) observations, we identify a pair of "sibling" Type Ia supernovae (SNe Ia), i.e., hosted by the same galaxy at z = 0.0541. They exploded within 200 days from each other at a separation of 0.6″ corresponding to a projected distance of only 0.6 kpc. Performing SALT2 light curve fits to the gri ZTF photometry, we show that for these equally distant "standardizable candles", there is a difference of 2 magnitudes in their rest frame B-band peaks, and the fainter SN has a significantly red SALT2 colour c=0.57± 0.04, while the stretch values x1 of the two SNe are similar, suggesting that the fainter SN is attenuated by dust in the interstellar medium of the host galaxy. We use these measurements to infer the SALT2 colour standardization parameter, β = 3.5 ± 0.3, independent of the underlying cosmology and Malmquist bias. Assuming the colour excess is entirely due to dust, the result differs by 2σ from the average Milky-Way total-to-selective extinction ratio, but is in good agreement with the colour-brightness corrections empirically derived from the most recent SN Ia Hubble-Lemaitre diagram fits. Thus we suggest that SN "siblings", which will increasingly be discovered in the coming years, can be used to probe the validity of the colour and lightcurve shape corrections using in SN Ia cosmology while avoiding important systematic effects in their inference from global multi-parameter fits to inhomogeneous data-sets, and also help constrain the role of interstellar dust in SN Ia cosmology.  more » « less
Award ID(s):
1440341 2034437
PAR ID:
10280384
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Cosmological analyses with type Ia supernovae (SNe Ia) often assume a single empirical relation between colour and luminosity (β) and do not account for varying host-galaxy dust properties. However, from studies of dust in large samples of galaxies, it is known that dust attenuation can vary significantly. Here, we take advantage of state-of-the-art modelling of galaxy properties to characterize dust parameters (dust attenuation AV, and a parameter describing the dust law slope RV) for 1100 Dark Energy Survey (DES) SN host galaxies. Utilizing optical and infrared data of the hosts alone, we find three key aspects of host dust that impact SN cosmology: (1) there exists a large range (∼1–6) of host RV; (2) high-stellar mass hosts have RV on average ∼0.7 lower than that of low-mass hosts; (3) for a subsample of 81 spectroscopically classified SNe there is a significant (>3σ) correlation between the Hubble diagram residuals of red SNe Ia and the host RV that when corrected for reduces scatter by $\sim 13{{\ \rm per\ cent}}$ and the significance of the ‘mass step’ to ∼1σ. These represent independent confirmations of recent predictions based on dust that attempted to explain the puzzling ‘mass step’ and intrinsic scatter (σint) in SN Ia analyses.

     
    more » « less
  2. ABSTRACT

    Recent analyses have found intriguing correlations between the colour (c) of type Ia supernovae (SNe Ia) and the size of their ‘mass-step’, the relationship between SN Ia host galaxy stellar mass (Mstellar) and SN Ia Hubble residual, and suggest that the cause of this relationship is dust. Using 675 photometrically classified SNe Ia from the Dark Energy Survey 5-yr sample, we study the differences in Hubble residual for a variety of global host galaxy and local environmental properties for SN Ia subsamples split by their colour. We find a 3σ difference in the mass-step when comparing blue (c < 0) and red (c > 0) SNe. We observe the lowest r.m.s. scatter (∼0.14 mag) in the Hubble residual for blue SNe in low mass/blue environments, suggesting that this is the most homogeneous sample for cosmological analyses. By fitting for c-dependent relationships between Hubble residuals and Mstellar, approximating existing dust models, we remove the mass-step from the data and find tentative ∼2σ residual steps in rest-frame galaxy U − R colour. This indicates that dust modelling based on Mstellar may not fully explain the remaining dispersion in SN Ia luminosity. Instead, accounting for a c-dependent relationship between Hubble residuals and global U − R, results in ≤1σ residual steps in Mstellar and local U − R, suggesting that U − R provides different information about the environment of SNe Ia compared to Mstellar, and motivating the inclusion of galaxy U − R colour in SN Ia distance bias correction.

     
    more » « less
  3. ABSTRACT

    While conventional Type Ia supernova (SN Ia) cosmology analyses rely primarily on rest-frame optical light curves to determine distances, SNe Ia are excellent standard candles in near-infrared (NIR) light, which is significantly less sensitive to dust extinction. An SN Ia spectral energy distribution (SED) model capable of fitting rest-frame NIR observations is necessary to fully leverage current and future SN Ia data sets from ground- and space-based telescopes including HST, LSST, JWST, and RST. We construct a hierarchical Bayesian model for SN Ia SEDs, continuous over time and wavelength, from the optical to NIR (B through H, or $0.35{-}1.8\, \mu$m). We model the SED as a combination of physically distinct host galaxy dust and intrinsic spectral components. The distribution of intrinsic SEDs over time and wavelength is modelled with probabilistic functional principal components and the covariance of residual functions. We train the model on a nearby sample of 79 SNe Ia with joint optical and NIR light curves by sampling the global posterior distribution over dust and intrinsic latent variables, SED components and population hyperparameters. Photometric distances of SNe Ia with NIR data near maximum obtain a total RMS error of 0.10 mag with our BayeSN model, compared to 0.13–0.14 mag with SALT2 and SNooPy for the same sample. Jointly fitting the optical and NIR data of the full sample up to moderate reddening (host E(B − V) < 0.4) for a global host dust law, we find RV = 2.9 ± 0.2, consistent with the Milky Way average.

     
    more » « less
  4. ABSTRACT

    Current and future Type Ia Supernova (SN Ia) surveys will need to adopt new approaches to classifying SNe and obtaining their redshifts without spectra if they wish to reach their full potential. We present here a novel approach that uses only photometry to identify SNe Ia in the 5-yr Dark Energy Survey (DES) data set using the SuperNNova classifier. Our approach, which does not rely on any information from the SN host-galaxy, recovers SNe Ia that might otherwise be lost due to a lack of an identifiable host. We select $2{,}298$ high-quality SNe Ia from the DES 5-yr data set an almost complete sample of detected SNe Ia. More than 700 of these have no spectroscopic host redshift and are potentially new SNIa compared to the DES-SN5YR cosmology analysis. To analyse these SNe Ia, we derive their redshifts and properties using only their light curves with a modified version of the SALT2 light-curve fitter. Compared to other DES SN Ia samples with spectroscopic redshifts, our new sample has in average higher redshift, bluer and broader light curves, and fainter host-galaxies. Future surveys such as LSST will also face an additional challenge, the scarcity of spectroscopic resources for follow-up. When applying our novel method to DES data, we reduce the need for follow-up by a factor of four and three for host-galaxy and live SN, respectively, compared to earlier approaches. Our novel method thus leads to better optimization of spectroscopic resources for follow-up.

     
    more » « less
  5. Abstract The current Cepheid-calibrated distance ladder measurement of H 0 is reported to be in tension with the values inferred from the cosmic microwave background (CMB), assuming standard cosmology. However, some tip of the red giant branch (TRGB) estimates report H 0 in better agreement with the CMB. Hence, it is critical to reduce systematic uncertainties in local measurements to understand the Hubble tension. In this paper, we propose a uniform distance ladder between the second and third rungs, combining Type Ia supernovae (SNe Ia) observed by the Zwicky Transient Facility (ZTF) with a TRGB calibration of their absolute luminosity. A large, volume-limited sample of both calibrator and Hubble flow SNe Ia from the same survey minimizes two of the largest sources of systematics: host-galaxy bias and nonuniform photometric calibration. We present results from a pilot study using the existing TRGB distance to the host galaxy of ZTF SN Ia SN 2021rhu (aka ZTF21abiuvdk) in NGC7814. Combining the ZTF calibrator with a volume-limited sample from the first data release of ZTF Hubble flow SNe Ia, we infer H 0 = 76.94 ± 6.4 km s −1 Mpc −1 , an 8.3% measurement. The error budget is dominated by the single object calibrating the SN Ia luminosity in this pilot study. However, the ZTF sample includes already five other SNe Ia within ∼20 Mpc for which TRGB distances can be obtained with the Hubble Space Telescope. Finally, we present the prospects of building this distance ladder out to 80 Mpc with James Webb Space Telescope observations of more than 100 ZTF SNe Ia. 
    more » « less