skip to main content

Title: Two c's in a pod: Cosmology independent measurement of the Type Ia supernova colour-luminosity relation with a sibling pair
Using Zwicky Transient Facility (ZTF) observations, we identify a pair of "sibling" Type Ia supernovae (SNe Ia), i.e., hosted by the same galaxy at z = 0.0541. They exploded within 200 days from each other at a separation of 0.6″ corresponding to a projected distance of only 0.6 kpc. Performing SALT2 light curve fits to the gri ZTF photometry, we show that for these equally distant "standardizable candles", there is a difference of 2 magnitudes in their rest frame B-band peaks, and the fainter SN has a significantly red SALT2 colour c=0.57± 0.04, while the stretch values x1 of the two SNe are similar, suggesting that the fainter SN is attenuated by dust in the interstellar medium of the host galaxy. We use these measurements to infer the SALT2 colour standardization parameter, β = 3.5 ± 0.3, independent of the underlying cosmology and Malmquist bias. Assuming the colour excess is entirely due to dust, the result differs by 2σ from the average Milky-Way total-to-selective extinction ratio, but is in good agreement with the colour-brightness corrections empirically derived from the most recent SN Ia Hubble-Lemaitre diagram fits. Thus we suggest that SN "siblings", which will increasingly be discovered in the coming more » years, can be used to probe the validity of the colour and lightcurve shape corrections using in SN Ia cosmology while avoiding important systematic effects in their inference from global multi-parameter fits to inhomogeneous data-sets, and also help constrain the role of interstellar dust in SN Ia cosmology. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Award ID(s):
1440341 2034437
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Radiative transfer models of two transitional type Ia supernovae (SNe Ia) have been produced using the abundance stratification technique. These two objects - designated SN 2007on and SN 2011iv - both exploded in the same galaxy, NGC 1404, which allows for a direct comparison. SN 2007on synthesized 0.25 M_{⊙} of 56Ni and was less luminous than SN 2011iv, which produced 0.31 M_{⊙} of 56Ni. SN 2007on had a lower central density (ρc) and higher explosion energy (Ekin ˜1.3 ± 0.3 × 1051erg) than SN 2011iv, and it produced less nuclear statistical equilibrium (NSE) elements (0.06 M_{⊙}). Whereas, SN 2011iv hadmore »a larger ρc, which increased the electron capture rate in the lowest velocity regions, and produced 0.35 M_{⊙} of stable NSE elements. SN 2011iv had an explosion energy of ˜Ekin ˜0.9 ± 0.2 × 1051erg. Both objects had an ejecta mass consistent with the Chandrasekhar mass (Ch-mass), and their observational properties are well described by predictions from delayed-detonation explosion models. Within this framework, comparison to the sub-luminous SN 1986G indicates SN 2011iv and SN 1986G have different transition densities (ρtr) but similar ρc. Whereas SN 1986G and SN 2007on had a similar ρtr but different ρc. Finally, we examine the colour-stretch parameter sBV versus Lmax relation and determine that the bulk of SNe Ia (including the sub-luminous ones) are consistent with Ch-mass delayed-detonation explosions, where the main parameter driving the diversity is ρtr. We also find ρc to be driving the second-order scatter observed at the faint end of the luminosity-width relationship.« less
  2. We present SNIascore, a deep-learning based method for spectroscopic classification of thermonuclear supernovae (SNe Ia) based on very low-resolution (R ∼100) data. The goal of SNIascore is fully automated classification of SNe Ia with a very low false-positive rate (FPR) so that human intervention can be greatly reduced in large-scale SN classification efforts, such as that undertaken by the public Zwicky Transient Facility (ZTF) Bright Transient Survey (BTS). We utilize a recurrent neural network (RNN) architecture with a combination of bidirectional long short-term memory and gated recurrent unit layers. SNIascore achieves a <0.6% FPR while classifying up to 90% ofmore »the low-resolution SN Ia spectra obtained by the BTS. SNIascore simultaneously performs binary classification and predicts the redshifts of secure SNe Ia via regression (with a typical uncertainty of <0.005 in the range from z=0.01 to z=0.12). For the magnitude-limited ZTF BTS survey (≈70% SNe Ia), deploying SNIascore reduces the amount of spectra in need of human classification or confirmation by ≈60%. Furthermore, SNIascore allows SN Ia classifications to be automatically announced in real-time to the public immediately following a finished observation during the night.« less
  3. ABSTRACT We present improved photometric measurements for the host galaxies of 206 spectroscopically confirmed type Ia supernovae discovered by the Dark Energy Survey Supernova Program (DES-SN) and used in the first DES-SN cosmological analysis. For the DES-SN sample, when considering a 5D (z, x1, c, α, β) bias correction, we find evidence of a Hubble residual ‘mass step’, where SNe Ia in high-mass galaxies (>1010M⊙) are intrinsically more luminous (after correction) than their low-mass counterparts by $\gamma =0.040\pm 0.019$ mag. This value is larger by 0.031 mag than the value found in the first DES-SN cosmological analysis. This difference is duemore »to a combination of updated photometric measurements and improved star formation histories and is not from host-galaxy misidentification. When using a 1D (redshift-only) bias correction the inferred mass step is larger, with $\gamma =0.066\pm 0.020$ mag. The 1D−5D γ difference for DES-SN is $0.026\pm 0.009$ mag. We show that this difference is due to a strong correlation between host galaxy stellar mass and the x1 component of the 5D distance-bias correction. Including an intrinsic correlation between the observed properties of SNe Ia, stretch and colour, and stellar mass in simulated SN Ia samples, we show that a 5D fit recovers γ with −9 mmag bias compared to a +2 mmag bias for a 1D fit. This difference can explain part of the discrepancy seen in the data. Improvements in modelling correlations between galaxy properties and SN is necessary to ensure unbiased precision estimates of the dark energy equation of state as we enter the era of LSST.« less

    Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) are crucial for constraining the properties of their progenitor systems. Theoretical studies predicted that the UV spectra, which probe the outermost layers of an SN, should be sensitive to the metal content of the progenitor. Using the largest SN Ia UV (λ < 2900 Å) spectroscopic sample obtained from Neil Gehrels Swift Observatory, we investigate the dependence of UV spectra on metallicity. For the first time, our results reveal a correlation (∼2σ) between SN Ia UV flux and host-galaxy metallicities, with SNe in more metal-rich galaxies (which are likely to havemore »higher progenitor metallicities) having lower UV flux level. We find that this metallicity effect is only significant at short wavelengths (λ ≲ 2700 Å), which agrees well with the theoretical predictions. We produce UV spectral templates for SNe Ia at peak brightness. With our sample, we could disentangle the effect of light-curve shape and metallicity on the UV spectra. We also examine the correlation between the UV spectra and SN luminosities as parametrized by Hubble residuals. However, we do not see a significant trend with Hubble residuals. This is probably due to the large uncertainties in SN distances, as the majority of our sample members are extremely nearby (redshift z ≲ 0.01). Future work with SNe discovered in the Hubble flow will be necessary to constrain a potential metallicity bias on SN Ia cosmology.

    « less
  5. Aims . We present a comprehensive dataset of optical and near-infrared photometry and spectroscopy of type Ia supernova (SN) 2016hnk, combined with integral field spectroscopy (IFS) of its host galaxy, MCG -01-06-070, and nearby environment. Our goal with this complete dataset is to understand the nature of this peculiar object. Methods . Properties of the SN local environment are characterized by means of single stellar population synthesis applied to IFS observations taken two years after the SN exploded. We performed detailed analyses of SN photometric data by studying its peculiar light and color curves. SN 2016hnk spectra were compared tomore »other 1991bg-like SNe Ia, 2002es-like SNe Ia, and Ca-rich transients. In addition, we used abundance stratification modeling to identify the various spectral features in the early phase spectral sequence and also compared the dataset to a modified non-LTE model previously produced for the sublumnious SN 1999by. Results . SN 2016hnk is consistent with being a subluminous ( M B  = −16.7 mag, s B V =0.43 ± 0.03), highly reddened object. The IFS of its host galaxy reveals both a significant amount of dust at the SN location, residual star formation, and a high proportion of old stellar populations in the local environment compared to other locations in the galaxy, which favors an old progenitor for SN 2016hnk. Inspection of a nebular spectrum obtained one year after maximum contains two narrow emission lines attributed to the forbidden [Ca  II ] λ λ 7291,7324 doublet with a Doppler shift of 700 km s −1 . Based on various observational diagnostics, we argue that the progenitor of SN 2016hnk was likely a near Chandrasekhar-mass ( M Ch ) carbon-oxygen white dwarf that produced 0.108 M ⊙ of 56 Ni. Our modeling suggests that the narrow [Ca  II ] features observed in the nebular spectrum are associated with 48 Ca from electron capture during the explosion, which is expected to occur only in white dwarfs that explode near or at the M Ch limit.« less