skip to main content


Title: Modeling acute and chronic vascular responses to a major arterial occlusion
Abstract Objective

To incorporate chronic vascular adaptations into a mathematical model of the rat hindlimb to simulate flow restoration following total occlusion of the femoral artery.

Methods

A vascular wall mechanics model is used to simulate acute and chronic vascular adaptations in the collateral arteries and collateral‐dependent arterioles of the rat hindlimb. On an acute timeframe, the vascular tone of collateral arteries and distal arterioles is determined by responses to pressure, shear stress, and metabolic demand. On a chronic timeframe, sustained dilation of arteries and arterioles induces outward vessel remodeling represented by increased passive vessel diameter (arteriogenesis), and low venous oxygen saturation levels induce the growth of new capillaries represented by increased capillary number (angiogenesis).

Results

The model predicts that flow compensation to an occlusion is enhanced primarily by arteriogenesis of the collateral arteries on a chronic time frame. Blood flow autoregulation is predicted to be disrupted and to occur for higher pressure values following femoral arterial occlusion.

Conclusions

Structural adaptation of the vasculature allows for increased blood flow to the collateral‐dependent region after occlusion. Although flow is still below pre‐occlusion levels, model predictions indicate that interventions which enhance collateral arteriogenesis would have the greatest potential for restoring flow.

 
more » « less
Award ID(s):
1654019
NSF-PAR ID:
10361404
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Microcirculation
Volume:
29
Issue:
1
ISSN:
1073-9688
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objective

    There is currently a lack of clarity regarding which vascular segments contribute most significantly to flow compensation following a major arterial occlusion. This study uses hemodynamic principles and computational modeling to demonstrate the relative contributions of capillaries, arterioles, and collateral arteries at rest or exercise following an abrupt, total, and sustained femoral arterial occlusion.

    Methods

    The vascular network of the simulated rat hindlimb is based on robust measurements of blood flow and pressure in healthy rats from exercise and training studies. The sensitivity of calf blood flow to acute or chronic vascular adaptations in distinct vessel segments is assessed.

    Results

    The model demonstrates that decreasing the distal microcirculation resistance has almost no effect on flow compensation, while decreasing collateral arterial resistance is necessary to restore resting calf flow following occlusion. Full restoration of non‐occluded flow is predicted under resting conditions given all chronic adaptations, but only 75% of non‐occluded flow is restored under exercise conditions.

    Conclusion

    This computational method establishes the hemodynamic significance of acute and chronic adaptations in the microvasculature and collateral arteries under rest and exercise conditions. Regardless of the metabolic level being simulated, this study consistently shows the dominating significance of collateral vessels following an occlusion.

     
    more » « less
  2. Abstract Objective

    The development of earlier and less invasive treatments for peripheral arterial disease requires a more complete understanding of vascular responses following a major arterial occlusion. A mechanistic model of the vasculature of the rat hindlimb is developed to predict acute (immediate) changes in vessel diameters and smooth muscle tone following femoral arterial occlusion.

    Methods

    Vascular responses of collateral arteries and distal arterioles to changes in pressure, shear stress, and metabolism are assessed before and after occlusion. The effects of exercise are also simulated and compared with venous flow measurements from WKY rats.

    Results

    The model identifies collateral arteries as the primary contributors to flow compensation following occlusion. Increasing the number of capillaries has minimal effect on blood flow while increasing the number of collateral arteries significantly increases flow, since the primary site of resistance shifts upstream to the collateral arteries following occlusion. Despite significant collateral dilation, calf flow remains below pre‐occlusion levels and the deficit becomes more severe with increased activity.

    Conclusions

    Although unable to compensate fully for an occlusion, the model demonstrates the importance of the shear response in collateral arteries and the metabolic response in the distal microcirculation in acute adaptations to a major arterial occlusion.

     
    more » « less
  3. Numerous disease conditions involve the sudden or progressive loss of blood flow. Perfusion restoration is vital for returning affected organs to full health. While a range of clinical interventions can successfully restore flow to downstream tissues, the microvascular responses after a loss-of-flow event can vary over time and may involve substantial microvessel instability. Increased insight into perfusion-mediated capillary stability and access-to-flow is therefore essential for advancing therapeutic reperfusion strategies and improving patient outcomes. To that end, we developed a tissue-based microvascular fluidics model to better understand (i) microvascular stability and access-to-flow over an acute time course post-ischemia, and (ii) collateral flow in vessels neighboring an occlusion site. We utilized murine intestinal tissue regions by catheterizing a feeder artery and introducing perfusate at physiologically comparable flow-rates. The cannulated vessel as well as a portion of the downstream vessels and associated intestinal tissue were cultured while constant perfusion conditions were maintained. An occlusion was introduced in a selected arterial segment, and changes in perfusion within areas receiving varying degrees of collateral flow were observed over time. To observe the microvascular response to perfusion changes, we incorporated (i) tissues harboring cell-reporter constructs, specifically Ng2-DsRed labeling of intestinal pericytes, and (ii) different types of fluorescent perfusates to quantify capillary access-to-flow at discrete time points. In our model, we found that perfusion tracers could enter capillaries within regions downstream of an occlusion upon the initial introduction of perfusion, but at 24 h tissue perfusion was severely decreased. However, live/dead cell discrimination revealed that the tissue overall did not experience significant cell death, including that of microvascular pericytes, even after 48 h. Our findings suggest that altered flow conditions may rapidly initiate cellular responses that reduce capillary access-to-flow, even in the absence of cellular deterioration or hypoxia. Overall, this ex vivo tissue-based microfluidics model may serve as a platform upon which a variety of follow-on studies may be conducted. It will thus enhance our understanding of microvessel stability and access-to-flow during an occlusive event and the role of collateral flow during normal and disrupted perfusion. 
    more » « less
  4. Abstract

    Bone modeling and remodeling are aerobic processes that entail relatively high oxygen demands. Long bones receive oxygenated blood from nutrient arteries, epiphyseal‐metaphyseal arteries, and periosteal arteries, with the nutrient artery supplying the bulk of total blood volume in mammals (~ 50–70%). Estimates of blood flow into these bones can be made from the dimensions of the nutrient canal, through which nutrient arteries pass. Unfortunately, measuring these canal dimensions non‐invasively (i.e. without physical sectioning) is difficult, and thus researchers have relied on more readily visible skeletal proxies. Specifically, the size of the nutrient artery has been estimated from dimensions (e.g. minimum diameters) of the periosteal (external) opening of the nutrient canal. This approach has also been utilized by some comparative morphologists and paleontologists, as the opening of a nutrient canal is present long after the vascular soft tissue has degenerated. The literature on nutrient arteries and canals is sparse, with most studies consisting of anatomical descriptions from surgical proceedings, and only a few investigating the links between nutrient canal morphology and physiology or behavior. The primary objective of this study was to evaluate femur nutrient canal morphology in mice with known physiological and behavioral differences; specifically, mice from an artificial selection experiment for high voluntary wheel‐running behavior. Mice from four replicate high runner (HR) lines are known to differ from four non‐selected control (C) lines in both locomotor and metabolic activity, withHRmice having increased voluntary wheel‐running behavior and maximal aerobic capacity (VO2max) during forced treadmill exercise. Femora from adult mice (average age 7.5 months) of the 11th generation of this selection experiment were μCT‐scanned and three‐dimensional virtual reconstructions of nutrient canals were measured for minimum cross‐sectional area as a skeletal proxy of blood flow. Gross observations revealed that nutrient canals varied far more in number and shape than prior descriptions would indicate, regardless of sex or genetic background (i.e.HRvs. C lines). Canals adopted non‐linear shapes and paths as they traversed from the periosteal to endosteal borders through the cortex, occasionally even branching within the cortical bone. Additionally, mice from bothHRand C lines averaged more than four nutrient canals per femur, in contrast to the one to two nutrient canals described for femora from rats, pigs, and humans in prior literature. Mice fromHRlines had significantly larger total nutrient canal area than C lines, which was the result not of an increase in the number of nutrient canals, but rather an increase in their average cross‐section size. This study demonstrates that mice with an evolutionary history of increased locomotor activity and maximal aerobic metabolic rate have a concomitant increase in the size of their femoral nutrient canals. Although the primary determinant of nutrient canal size is currently not well understood, the present results bolster use of nutrient canal size as a skeletal indicator of aerobically supported levels of physical activity in comparative studies.

     
    more » « less
  5. Key points

    Vascular oxidative stress increases with advancing age.

    We hypothesized that resistance vessels develop resilience to oxidative stress to protect functional integrity and tested this hypothesis by exposing isolated pressurized superior epigastric arteries (SEAs) of old and young mice to H2O2.

    H2O2‐induced death was greater in smooth muscle cells (SMCs) than endothelial cells (ECs) and lower in SEAs from oldvs. young mice; the rise in vessel wall [Ca2+]iinduced by H2O2was attenuated with ageing, as was the decline in noradrenergic vasoconstriction; genetic deletion of IL‐10 mimicked the effects of advanced age on cell survival.

    Inhibiting NO synthase or scavenging peroxynitrite reduced SMC death; endothelial denudation or inhibiting gap junctions increased SMC death; delocalization of cytochrome C activated caspases 9 and 3 to induce apoptosis.

    Vascular cells develop resilience to H2O2during ageing by preventing Ca2+overload and endothelial integrity promotes SMC survival.

    Abstract

    Advanced age is associated with elevated oxidative stress and can protect the endothelium from cell death induced by H2O2. Whether such protection occurs for intact vessels or differs between smooth muscle cell (SMC) and endothelial cell (EC) layers is unknown. We tested the hypothesis that ageing protects SMCs and ECs during acute exposure to H2O2(200 µm, 50 min). Mouse superior epigastric arteries (SEAs; diameter, ∼150 µm) were isolated and pressurized to 100 cmH2O at 37˚C. For SEAs from young (4 months) mice, H2O2killed 57% of SMCs and 11% of ECs in malesvs. 8% and 2%, respectively, in females. Therefore, SEAs from males were studied to resolve the effect of ageing and experimental interventions. For old (24 months) mice, SMC death was reduced to 10% with diminished accumulation of [Ca2+]iin the vessel wall during H2O2exposure. In young mice, genetic deletion of IL‐10 mimicked the protective effect of ageing on cell death and [Ca2+]iaccumulation. Whereas endothelial denudation or gap junction inhibition (carbenoxolone; 100 µm) increased SMC death, inhibiting NO synthase (l‐NAME, 100 µm) or scavenging peroxynitrite (FeTPPS, 5 µm) reduced SMC death along with [Ca2+]i. Despite NO toxicity via peroxynitrite formation, endothelial integrity protects SMCs. Caspase inhibition (Z‐VAD‐FMK, 50 µm) attenuated cell death with immunostaining for annexin V, cytochrome C, and caspases 3 and 9 pointing to induction of intrinsic apoptosis during H2O2exposure. We conclude that advanced age reduces Ca2+influx that triggers apoptosis, thereby promoting resilience of the vascular wall during oxidative stress.

     
    more » « less