skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling acute and chronic vascular responses to a major arterial occlusion
Abstract ObjectiveTo incorporate chronic vascular adaptations into a mathematical model of the rat hindlimb to simulate flow restoration following total occlusion of the femoral artery. MethodsA vascular wall mechanics model is used to simulate acute and chronic vascular adaptations in the collateral arteries and collateral‐dependent arterioles of the rat hindlimb. On an acute timeframe, the vascular tone of collateral arteries and distal arterioles is determined by responses to pressure, shear stress, and metabolic demand. On a chronic timeframe, sustained dilation of arteries and arterioles induces outward vessel remodeling represented by increased passive vessel diameter (arteriogenesis), and low venous oxygen saturation levels induce the growth of new capillaries represented by increased capillary number (angiogenesis). ResultsThe model predicts that flow compensation to an occlusion is enhanced primarily by arteriogenesis of the collateral arteries on a chronic time frame. Blood flow autoregulation is predicted to be disrupted and to occur for higher pressure values following femoral arterial occlusion. ConclusionsStructural adaptation of the vasculature allows for increased blood flow to the collateral‐dependent region after occlusion. Although flow is still below pre‐occlusion levels, model predictions indicate that interventions which enhance collateral arteriogenesis would have the greatest potential for restoring flow.  more » « less
Award ID(s):
1654019
PAR ID:
10361404
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Microcirculation
Volume:
29
Issue:
1
ISSN:
1073-9688
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract ObjectiveAn improved understanding of the role of the leptomeningeal collateral circulation in blood flow compensation following middle cerebral artery (MCA) occlusion can contribute to more effective treatment development for ischemic stroke. The present study introduces a model of the cerebral circulation to predict cerebral blood flow and tissue oxygenation following MCA occlusion. MethodsThe model incorporates flow regulation mechanisms based on changes in pressure, shear stress, and metabolic demand. Oxygen saturation in cerebral vessels and tissue is calculated using a Krogh cylinder model. The model is used to assess the effects of changes in oxygen demand and arterial pressure on cerebral blood flow and oxygenation after MCA occlusion. ResultsAn increase from five to 11 leptomeningeal collateral vessels was shown to increase the oxygen saturation in the region distal to the occlusion by nearly 100%. Post‐occlusion, the model also predicted a loss of autoregulation and a decrease in flow to the ischemic territory as oxygen demand was increased; these results were consistent with data from experiments that induced cerebral ischemia. ConclusionsThis study highlights the importance of leptomeningeal collaterals following MCA occlusion and reinforces the idea that lower oxygen demand and higher arterial pressure improve conditions of flow and oxygenation. 
    more » « less
  2. Numerous disease conditions involve the sudden or progressive loss of blood flow. Perfusion restoration is vital for returning affected organs to full health. While a range of clinical interventions can successfully restore flow to downstream tissues, the microvascular responses after a loss-of-flow event can vary over time and may involve substantial microvessel instability. Increased insight into perfusion-mediated capillary stability and access-to-flow is therefore essential for advancing therapeutic reperfusion strategies and improving patient outcomes. To that end, we developed a tissue-based microvascular fluidics model to better understand (i) microvascular stability and access-to-flow over an acute time course post-ischemia, and (ii) collateral flow in vessels neighboring an occlusion site. We utilized murine intestinal tissue regions by catheterizing a feeder artery and introducing perfusate at physiologically comparable flow-rates. The cannulated vessel as well as a portion of the downstream vessels and associated intestinal tissue were cultured while constant perfusion conditions were maintained. An occlusion was introduced in a selected arterial segment, and changes in perfusion within areas receiving varying degrees of collateral flow were observed over time. To observe the microvascular response to perfusion changes, we incorporated (i) tissues harboring cell-reporter constructs, specifically Ng2-DsRed labeling of intestinal pericytes, and (ii) different types of fluorescent perfusates to quantify capillary access-to-flow at discrete time points. In our model, we found that perfusion tracers could enter capillaries within regions downstream of an occlusion upon the initial introduction of perfusion, but at 24 h tissue perfusion was severely decreased. However, live/dead cell discrimination revealed that the tissue overall did not experience significant cell death, including that of microvascular pericytes, even after 48 h. Our findings suggest that altered flow conditions may rapidly initiate cellular responses that reduce capillary access-to-flow, even in the absence of cellular deterioration or hypoxia. Overall, this ex vivo tissue-based microfluidics model may serve as a platform upon which a variety of follow-on studies may be conducted. It will thus enhance our understanding of microvessel stability and access-to-flow during an occlusive event and the role of collateral flow during normal and disrupted perfusion. 
    more » « less
  3. Autoregulation and neurovascular coupling are key mechanisms that modulate myogenic tone (MT) in vessels to regulate cerebral blood flow (CBF) during resting state and periods of increased neural activity, respectively. To determine relative contributions of distinct vascular zones across different cortical depths in CBF regulation, we developed a simplified yet detailed and computationally efficient model of the mouse cerebrovasculature. The model integrates multiple simplifications and generalizations regarding vascular morphology, the hierarchical organization of mural cells, and potentiation/inhibition of MT in vessels. Our analysis showed that autoregulation is the result of the synergy between these factors, but achieving an optimal balance across all cortical depths and throughout the autoregulation range is a complex task. This complexity explains the non-uniformity observed experimentally in capillary blood flow at different cortical depths. In silico simulations of cerebral autoregulation support the idea that the cerebral vasculature does not maintain a plateau of blood flow throughout the autoregulatory range and consists of both flat and sloped phases. We learned that small-diameter vessels with large contractility, such as penetrating arterioles and precapillary arterioles, have major control over intravascular pressure at the entry points of capillaries and play a significant role in CBF regulation. However, temporal alterations in capillary diameter contribute moderately to cerebral autoregulation and minimally to functional hyperemia. In addition, hemodynamic analysis shows that while hemodynamics within capillaries remain relatively stable across all cortical depths throughout the entire autoregulation range, significant variability in hemodynamics can be observed within the first few branch orders of precapillary arterioles or transitional zone vessels. The computationally efficient cerebrovasculature model, proposed in this study, provides a novel framework for analyzing dynamics of the CBF regulation where hemodynamic and vasodynamic interactions are the foundation on which more sophisticated models can be developed. 
    more » « less
  4. Recent advances in modeling oxygen supply to cortical brain tissue have begun to elucidate the functional mechanisms of neurovascular coupling. While the principal mechanisms of blood flow regulation after neuronal firing are generally known, mechanistic hemodynamic simulations cannot yet pinpoint the exact spatial and temporal coordination between the network of arteries, arterioles, capillaries and veins for the entire brain. Because of the potential significance of blood flow and oxygen supply simulations for illuminating spatiotemporal regulation inside the cortical microanatomy, there is a need to create mathematical models of the entire cerebral circulation with realistic anatomical detail. Our hypothesis is that an anatomically accurate reconstruction of the cerebrocirculatory architecture will inform about possible regulatory mechanisms of the neurovascular interface. In this article, we introduce large-scale networks of the murine cerebral circulation spanning the Circle of Willis, main cerebral arteries connected to the pial network down to the microcirculation in the capillary bed. Several multiscale models were generated from state-of-the-art neuroimaging data. Using a vascular network construction algorithm, the entire circulation of the middle cerebral artery was synthesized. Blood flow simulations indicate a consistent trend of higher hematocrit in deeper cortical layers, while surface layers with shorter vascular path lengths seem to carry comparatively lower red blood cell (RBC) concentrations. Moreover, the variability of RBC flux decreases with cortical depth. These results support the notion that plasma skimming serves a self-regulating function for maintaining uniform oxygen perfusion to neurons irrespective of their location in the blood supply hierarchy. Our computations also demonstrate the practicality of simulating blood flow for large portions of the mouse brain with existing computer resources. The efficient simulation of blood flow throughout the entire middle cerebral artery (MCA) territory is a promising milestone towards the final aim of predicting blood flow patterns for the entire brain. 
    more » « less
  5. INTRODUCTION: The morphological and molecular changes associated with the degeneration of arterioles in cerebral amyloid angiopathy (CAA) are incompletely understood. METHODS: Post mortem brains from 26 patients with CAA or neurological controls were analyzed using light-sheet microscopy, and morphological features of microvascular degeneration were quantified using surface volume rendering. Vascular stiffness was analyzed using atomic force microscopy. RESULT: Vascular smooth muscle cells (VSMCs) volume was reduced by ≈ 55% inCAA. This loss of VSMC volume correlated with increased arteriolar diameter, variability in diameter, and the volume of amyloid beta (Aβ) deposition in the vessel. Vessels with CAA were > 300% stiffer than controls. The volume of extracellular matrix cross-linking enzyme lysyl oxidase (LOX) correlated closely with vascular degenerative features. DISCUSSION: Our findings provide valuable insights into the connections among LOX, Aβ deposition, and vascular stiffness in CAA. Restoration of physiologic extracellular matrix properties in penetrating arteries may yield a novel therapeutic strategy for CAA. 
    more » « less