Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Précis:The relationship between structural and hemodynamic parameters in patients with primary open angle glaucoma is strongest in the temporal region of the optic nerve. Purpose:To investigate the relationship between radial peripapillary capillary (RPC) vessel density (VD) and retinal nerve fiber layer (RNFL) thickness in quadrants and sectors of the optic nerve head (ONH) in patients with and without primary open angle glaucoma (POAG). Methods:In a cross-sectional prospective analysis, 191 subjects (80 early-stage POAG; 111 non-glaucomatous controls) were assessed for RNFL thickness and RPC VD in each quadrant [superior (S), inferior (I), nasal (N) and temporal (T)] and sector [inferior-temporal (IT), temporo-inferior (TI), temporo-superior (TS), superior-temporal (ST), inferior-nasal (IN), naso-inferior (NI), naso-superior (NS), and superior-nasal (SN) sectors] of the ONH through optical coherence tomography angiography (OCTA). Pearson correlations were used to test for associations between measurements, withP<0.05 considered statistically significant. Results:Significantly stronger positive correlations were found between RPC VD and RNFL thickness in the S, I, and T quadrants in POAG patients compared with non-glaucomatous controls (allP<0.05). The temporal quadrant in POAG patients displayed the largest difference in correlation compared with controls. A stronger positive correlation was also found between RPC VD and RNFL thickness in the temporal sectors of the ONH in POAG patients compared with controls, with the largest difference in the TS sector (allP<0.05). Conclusion:Early-stage POAG patients have a stronger relationship between RPC VD and RNFL in the temporal regions of the ONH compared with non-glaucomatous controls, with the TS sector demonstrating the largest difference between groups. Temporal sector VD loss may represent an early-stage biomarker for vascular-linked POAG disease.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Abstract ObjectiveAn improved understanding of the role of the leptomeningeal collateral circulation in blood flow compensation following middle cerebral artery (MCA) occlusion can contribute to more effective treatment development for ischemic stroke. The present study introduces a model of the cerebral circulation to predict cerebral blood flow and tissue oxygenation following MCA occlusion. MethodsThe model incorporates flow regulation mechanisms based on changes in pressure, shear stress, and metabolic demand. Oxygen saturation in cerebral vessels and tissue is calculated using a Krogh cylinder model. The model is used to assess the effects of changes in oxygen demand and arterial pressure on cerebral blood flow and oxygenation after MCA occlusion. ResultsAn increase from five to 11 leptomeningeal collateral vessels was shown to increase the oxygen saturation in the region distal to the occlusion by nearly 100%. Post‐occlusion, the model also predicted a loss of autoregulation and a decrease in flow to the ischemic territory as oxygen demand was increased; these results were consistent with data from experiments that induced cerebral ischemia. ConclusionsThis study highlights the importance of leptomeningeal collaterals following MCA occlusion and reinforces the idea that lower oxygen demand and higher arterial pressure improve conditions of flow and oxygenation.more » « less
- 
            Abstract PurposeThis study aims to characterize the dependence of measured retinal arterial and venous saturation on vessel diameter and central reflex in retinal oximetry, with an ultimate goal of identifying potential causes and suggesting approaches to improve measurement accuracy. MethodsIn 10 subjects, oxygen saturation, vessel diameter and optical density are obtained using Oxymap Analyzer software without diameter correction. Diameter dependence of saturation is characterized using linear regression between measured values of saturation and diameter. Occurrences of negative values of vessel optical densities (ODs) associated with central vessel reflex are acquired from Oxymap Analyzer. A conceptual model is used to calculate the ratio of optical densities (ODRs) according to retinal reflectance properties and single and double‐pass light transmission across fixed path lengths. Model‐predicted values are compared with measured oximetry values at different vessel diameters. ResultsVenous saturation shows an inverse relationship with vessel diameter (D) across subjects, with a mean slope of −0.180 (SE = 0.022) %/μm (20 < D < 180 μm) and a more rapid saturation increase at small vessel diameters reaching to over 80%. Arterial saturation yields smaller positive and negative slopes in individual subjects, with an average of −0.007 (SE = 0.021) %/μm (20 < D < 200 μm) across all subjects. Measurements where vessel brightness exceeds that of the retinal background result in negative values of optical density, causing an artifactual increase in saturation. Optimization of model reflectance values produces a good fit of the conceptual model to measured ODRs. ConclusionMeasurement artefacts in retinal oximetry are caused by strong central vessel reflections, and apparent diameter sensitivity may result from single and double‐pass transmission in vessels. Improvement in correction for vessel diameter is indicated for arteries however further study is necessary for venous corrections.more » « less
- 
            Précis:Capillary and neuronal tissue loss occur both globally and with regional specificity in pre-perimetric glaucoma patients at the level of the optic nerve and macula, with perifovea regions affected earlier than parafovea areas. Purpose:To investigate optic nerve head (ONH) and macular vessel densities (VD) and structural parameters assessed by optical coherence tomography angiography in pre-perimetric open angle glaucoma (ppOAG) patients and healthy controls. Materials and Methods:In all, 113 healthy and 79 ppOAG patients underwent global and regional (hemispheric/quadrants) assessments of retinal, ONH, and macular vascularity and structure, including ONH parameters, retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC) thickness. Comparisons between outcomes in ppOAG and controls were adjusted for age, sex, race, BMI, diabetes, and hypertension, withP<0.05 considered statistically significant. Results:In ppOAG compared with healthy controls: RNFL thicknesses were statistically significantly lower for all hemispheres, quadrants, and sectors (P<0.001–0.041); whole image peripapillary all and small blood vessels VD were statistically significantly lower for all the quadrants (P<0.001–0.002), except for the peripapillary small vessels in the temporal quadrant (ppOAG: 49.66 (8.40), healthy: 53.45 (4.04);P=0.843); GCC and inner and full macular thicknesses in the parafoveal and perifoveal regions were significantly lower in all the quadrants (P=0.000–P=0.033); several macular VD were significantly lower (P=0.006–0.034), with the exceptions of macular center, parafoveal superior and inferior quadrant, and perifoveal superior quadrant (P>0.05). Conclusions:In ppOAG patients, VD biomarkers in both the macula and ONH, alongside RNFL, GCC, and macular thickness, were significantly reduced before detectable visual field loss with regional specificity. The most significant VD reduction detected was in the peripheric (perifovea) regions. Macular and ONH decrease in VD may serve as early biomarkers of glaucomatous disease.more » « less
- 
            Abstract ObjectiveTo incorporate chronic vascular adaptations into a mathematical model of the rat hindlimb to simulate flow restoration following total occlusion of the femoral artery. MethodsA vascular wall mechanics model is used to simulate acute and chronic vascular adaptations in the collateral arteries and collateral‐dependent arterioles of the rat hindlimb. On an acute timeframe, the vascular tone of collateral arteries and distal arterioles is determined by responses to pressure, shear stress, and metabolic demand. On a chronic timeframe, sustained dilation of arteries and arterioles induces outward vessel remodeling represented by increased passive vessel diameter (arteriogenesis), and low venous oxygen saturation levels induce the growth of new capillaries represented by increased capillary number (angiogenesis). ResultsThe model predicts that flow compensation to an occlusion is enhanced primarily by arteriogenesis of the collateral arteries on a chronic time frame. Blood flow autoregulation is predicted to be disrupted and to occur for higher pressure values following femoral arterial occlusion. ConclusionsStructural adaptation of the vasculature allows for increased blood flow to the collateral‐dependent region after occlusion. Although flow is still below pre‐occlusion levels, model predictions indicate that interventions which enhance collateral arteriogenesis would have the greatest potential for restoring flow.more » « less
- 
            Free, publicly-accessible full text available January 17, 2026
- 
            Free, publicly-accessible full text available November 1, 2025
- 
            Background/Objectives: To investigate macular vascular biomarkers for the detection of primary open-angle glaucoma (POAG). Methods: A total of 56 POAG patients and 94 non-glaucomatous controls underwent optical coherence tomography angiography (OCTA) assessment of macular vessel density (VD) in the superficial (SCP), and deep (DCP) capillary plexus, foveal avascular zone (FAZ) area, perimeter, VD, choriocapillaris and outer retina flow area. POAG patients were classified for severity based on the Glaucoma Staging System 2 of Brusini. ANCOVA comparisons adjusted for age, sex, race, hypertension, diabetes, and areas under the receiver operating characteristic curves (AUCs) for POAG/control differentiation were compared using the DeLong method. Results: Global, hemispheric, and quadrant SCP VD was significantly lower in POAG patients in the whole image, parafovea, and perifovea (p < 0.001). No significant differences were found between POAG and controls for DCP VD, FAZ parameters, and the retinal and choriocapillaris flow area (p > 0.05). SCP VD in the whole image and perifovea were significantly lower in POAG patients in stage 2 than stage 0 (p < 0.001). The AUCs of SCP VD in the whole image (0.86) and perifovea (0.84) were significantly higher than the AUCs of all DCP VD (p < 0.05), FAZ parameters (p < 0.001), and retinal (p < 0.001) and choriocapillaris flow areas (p < 0.05). Whole image SCP VD was similar to the AUC of the global retinal nerve fiber layer (RNFL) (AUC = 0.89, p = 0.53) and ganglion cell complex (GCC) thickness (AUC = 0.83, p = 0.42). Conclusions: SCP VD is lower with increasing functional damage in POAG patients. The AUC for SCP VD was similar to RNFL and GCC using clinical diagnosis as the reference standard.more » « less
- 
            As populations worldwide show increasing levels of stress, understanding emerging links among stress, inflammation, cognition, and behavior is vital to human and planetary health. We hypothesize that inflammation is a multiscale driver connecting stressors that affect individuals to large-scale societal dysfunction and, ultimately, to planetary-scale environmental impacts. We propose a “central inflammation map” hypothesis to explain how the brain regulates inflammation and how inflammation impairs cognition, emotion, and action. According to our hypothesis, these interdependent inflammatory and neural processes, and the inter-individual transmission of environmental, infectious, and behavioral stressors—amplified via high-throughput digital global communications—can culminate in a multiscale, runaway, feed-forward process that could detrimentally affect human decision-making and behavior at scale, ultimately impairing the ability to address these same stressors. This perspective could provide non-intuitive explanations for behaviors and relationships among cells, organisms, and communities of organisms, potentially including population-level responses to stressors as diverse as global climate change, conflicts, and the COVID-19 pandemic. To illustrate our hypothesis and elucidate its mechanistic underpinnings, we present a mathematical model applicable to the individual and societal levels to test the links among stress, inflammation, control, and healing, including the implications of transmission, intervention (e.g., via lifestyle modification or medication), and resilience. Future research is needed to validate the model’s assumptions and conclusions against empirical benchmarks and to expand the factors/variables employed. Our model illustrates the need for multilayered, multiscale stress mitigation interventions, including lifestyle measures, precision therapeutics, and human ecosystem design. Our analysis shows the need for a coordinated, interdisciplinary, international research effort to understand the multiscale nature of stress. Doing so would inform the creation of interventions that improve individuals’ lives; enhance communities’ resilience to stress; and mitigate the adverse effects of stress on the world.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
