skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The impact of r -process heating on the dynamics of neutron star merger accretion disc winds and their electromagnetic radiation
ABSTRACT Neutron star merger accretion discs can launch neutron-rich winds of >10−2M⊙. This ejecta is a prime site for r-process nucleosynthesis, which will produce a range of radioactive heavy nuclei. The decay of these nuclei releases enough energy to accelerate portions of the wind by ∼0.1c. Here, we investigate the effect of r-process heating on the dynamical evolution of disc winds. We extract the wind from a 3D general relativistic magnetohydrodynamic simulation of a disc from a post-merger system. This is used to create inner boundary conditions for 2D hydrodynamic simulations that continue the original 3D simulation. We perform two such simulations: one that includes the r-process heating, and another one that does not. We follow the hydrodynamic simulations until the winds reach homology (60 s). Using time-dependent multifrequency multidimensional Monte Carlo radiation transport simulations, we then calculate the kilonova light curves from the winds with and without dynamical r-process heating. We find that the r-process heating can substantially alter the velocity distribution of the wind, shifting the mass-weighted median velocity from 0.06c to 0.12c. The inclusion of the dynamical r-process heating makes the light curve brighter and bluer at $$\sim 1\, \mathrm{d}$$ post-merger. However, the high-velocity tail of the ejecta distribution and the early ($$\lesssim 1\, \mathrm{d}$$) light curves are largely unaffected.  more » « less
Award ID(s):
1815304
PAR ID:
10361432
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
510
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2968-2979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT The merger of two neutron stars produces an outflow of radioactive heavy nuclei. Within a second of merger, the central remnant is expected to also launch a relativistic jet, which shock-heats and disrupts a portion of the radioactive ejecta. Within a few hours, emission from the radioactive material gives rise to an ultraviolet, optical, and infrared transient (a kilonova). We use the endstates of a suite of 2D relativistic hydrodynamic simulations of jet–ejecta interaction as initial conditions for multidimensional Monte Carlo radiation transport simulations of the resulting viewing angle-dependent light curves and spectra starting at $$1.5\, \mathrm{h}$$ after merger. We find that on this time-scale, jet shock heating does not affect the kilonova emission for the jet parameters we survey. However, the jet disruption to the density structure of the ejecta does change the light curves. The jet carves a channel into the otherwise spheroidal ejecta, revealing the hot, inner regions. As seen from near (≲30°) the jet axis, the kilonova is brighter by a factor of a few and bluer. The strength of this effect depends on the jet parameters, since the light curves of more heavily disrupted ejecta are more strongly affected. The light curves and spectra are also more heavily modified in the ultraviolet than in the optical. 
    more » « less
  2. ABSTRACT We investigate r-process nucleosynthesis and kilonova emission resulting from binary neutron star (BNS) mergers based on a three-dimensional (3D) general-relativistic magnetohydrodynamic (GRMHD) simulation of a hypermassive neutron star (HMNS) remnant. The simulation includes a microphysical finite-temperature equation of state (EOS) and neutrino emission and absorption effects via a leakage scheme. We track the thermodynamic properties of the ejecta using Lagrangian tracer particles and determine its composition using the nuclear reaction network SkyNet. We investigate the impact of neutrinos on the nucleosynthetic yields by varying the neutrino luminosities during post-processing. The ejecta show a broad distribution with respect to their electron fraction Ye, peaking between ∼0.25–0.4 depending on the neutrino luminosity employed. We find that the resulting r-process abundance patterns differ from solar, with no significant production of material beyond the second r-process peak when using luminosities recorded by the tracer particles. We also map the HMNS outflows to the radiation hydrodynamics code SNEC and predict the evolution of the bolometric luminosity as well as broadband light curves of the kilonova. The bolometric light curve peaks on the timescale of a day and the brightest emission is seen in the infrared bands. This is the first direct calculation of the r-process yields and kilonova signal expected from HMNS winds based on 3D GRMHD simulations. For longer-lived remnants, these winds may be the dominant ejecta component producing the kilonova emission. 
    more » « less
  3. Abstract Understanding the details ofr-process nucleosynthesis in binary neutron star merger (BNSM) ejecta is key to interpreting kilonova observations and identifying the role of BNSMs in the origin of heavy elements. We present a self-consistent, two-dimensional, ray-by-ray radiation-hydrodynamic evolution of BNSM ejecta with an online nuclear network (NN) up to a timescale of days. For the first time, an initial numerical relativity ejecta profile composed of the dynamical component and spiral-wave and disk winds is evolved including detailedr-process reactions and nuclear heating effects. A simple model for the jet energy deposition is also included. Our simulation highlights that the common approach of relating in postprocessing the final nucleosynthesis yields to the initial thermodynamic profile of the ejecta can lead to inaccurate predictions. Moreover, we find that neglecting the details of the radiation-hydrodynamic evolution of the ejecta in nuclear calculations can introduce deviations of up to 1 order of magnitude in the final abundances of several elements, including very light and secondr-process peak elements. The presence of a jet affects element production only in the innermost part of the polar ejecta, and it does not alter the global nucleosynthesis results. Overall, our analysis shows that employing an online NN improves the reliability of nucleosynthesis and kilonova light-curve predictions. 
    more » « less
  4. Abstract Formed in the aftermath of a core-collapse supernova or neutron star merger, a hot proto–neutron star (PNS) launches an outflow driven by neutrino heating lasting for up to tens of seconds. Though such winds are considered potential sites for the nucleosynthesis of heavy elements via the rapid neutron capture process (r-process), previous work has shown that unmagnetized PNS winds fail to achieve the necessary combination of high entropy and/or short dynamical timescale in the seed nucleus formation region. We present three-dimensional general-relativistic magnetohydrodynamical simulations of PNS winds which include the effects of a dynamically strong (B≳ 1015G) dipole magnetic field. After initializing the magnetic field, the wind quickly develops a helmet-streamer configuration, characterized by outflows along open polar magnetic field lines and a “closed” zone of trapped plasma at lower latitudes. Neutrino heating within the closed zone causes the thermal pressure of the trapped material to rise in time compared to the polar outflow regions, ultimately leading to the expulsion of this matter from the closed zone on a timescale of ∼60 ms, consistent with the predictions of Thompson. The high entropies of these transient ejecta are still growing at the end of our simulations and are sufficient to enable a successful second-peakr-process in at least a modest ≳1% of the equatorial wind ejecta. 
    more » « less
  5. Kilonovae, one source of electromagnetic emission associated with neutron star mergers, are powered by the decay of radioactive isotopes in the neutron-rich merger ejecta. Models for kilonova emission consistent with the electromagnetic counterpart to GW170817 predict characteristic abundance patterns, determined by the relative balance of different types of material in the outflow. Assuming that the observed source is prototypical, this inferred abundance pattern in turn must matchr-process abundances deduced by other means, such as what is observed in the solar system. We report on analysis comparing the input mass-weighted elemental compositions adopted in our radiative transfer simulations to the mass fractions of elements in the Sun, as a practical prototype for the potentially universal abundance signature from neutron star mergers. We characterize the extent to which our parameter inference results depend on our assumed composition for the dynamical and wind ejecta and examine how the new results compare to previous work. We find that a dynamical ejecta composition calculated using the FRDM2012 nuclear mass and FRLDM fission models with extremely neutron-rich ejecta (Ye= 0.035) along with moderately neutron-rich (Ye= 0.27) wind ejecta composition yields a wind-to-dynamical mass ratio ofMw/Md= 0.47, which best matches the observed AT2017gfo kilonova light curves while also producing the best-matching abundance of neutron capture elements in the solar system, though, allowing for systematics, the ratio may be as high as of order unity. 
    more » « less