skip to main content


Title: Viscoelastic parameterization of human skin cells characterize material behavior at multiple timescales
Abstract

Countless biophysical studies have sought distinct markers in the cellular mechanical response that could be linked to morphogenesis, homeostasis, and disease. Here, an iterative-fitting methodology visualizes the time-dependent viscoelastic behavior of human skin cells under physiologically relevant conditions. Past investigations often involved parameterizing elastic relationships and assuming purely Hertzian contact mechanics, which fails to properly account for the rich temporal information available. We demonstrate the performance superiority of the proposed iterative viscoelastic characterization method over standard open-search approaches. Our viscoelastic measurements revealed that 2D adherent metastatic melanoma cells exhibit reduced elasticity compared to their normal counterparts—melanocytes and fibroblasts, and are significantly less viscous than fibroblasts over timescales spanning three orders of magnitude. The measured loss angle indicates clear differential viscoelastic responses across multiple timescales between the measured cells. This method provides insight into the complex viscoelastic behavior of metastatic melanoma cells relevant to better understanding cancer metastasis and aggression.

 
more » « less
Award ID(s):
2019507
NSF-PAR ID:
10361493
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Volume:
5
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cell development and behavior are driven by internal genetic programming, but the external microenvironment is increasingly recognized as a significant factor in cell differentiation, migration, and in the case of cancer, metastatic progression. Yet it remains unclear how the microenvironment influences cell processes, especially when examining cell motility. One factor that affects cell motility is cell mechanics, which is known to be related to substrate stiffness. Examining how cells interact with each other in response to mechanically differential substrates would allow an increased understanding of their coordinated cell motility. In order to probe the effect of substrate stiffness on tumor related cells in greater detail, we created hard–soft–hard (HSH) polydimethylsiloxane (PDMS) substrates with alternating regions of different stiffness (200 and 800 kPa). We then cultured WI-38 fibroblasts and A549 epithelial cells to probe their motile response to the substrates. We found that when the 2 cell types were exposed simultaneously to the same substrate, fibroblasts moved at an increased speed over epithelial cells. Furthermore, the HSH substrate allowed us to physically guide and separate the different cell types based on their relative motile speed. We believe that this method and results will be important in a diversity of areas including mechanical microenvironment, cell motility, and cancer biology. 
    more » « less
  2. Abstract

    Metastatic breast cancer is one of the deadliest forms of malignancy, primarily driven by its characteristic micro‐environment comprising cancer cells interacting with stromal components. These interactions induce genetic and metabolic alterations creating a conducive environment for tumor growth. In this study, a physiologically relevant 3D vascularized breast cancer micro‐environment is developed comprising of metastatic MDA‐MB‐231 cells and human umbilical vein endothelial cells loaded in human dermal fibroblasts laden fibrin, representing the tumor stroma. The matrix, as well as stromal cell density, impacts the transcriptional profile of genes involved in tumor angiogenesis and cancer invasion, which are hallmarks of cancer. Cancer‐specific canonical pathways and activated upstream regulators are also identified by the differential gene expression signatures of these composite cultures. Additionally, a tumor‐associated vascular bed of capillaries is established exhibiting dilated vessel diameters, representative of in vivo tumor physiology. Further, employing aspiration‐assisted bioprinting, cancer–endothelial crosstalk, in the form of collective angiogenesis of tumor spheroids bioprinted at close proximity, is identified. Overall, this bottom–up approach of tumor micro‐environment fabrication provides an insight into the potential of in vitro tumor models and enables the identification of novel therapeutic targets as a preclinical drug screening platform.

     
    more » « less
  3. Abstract

    Cancer progression involves complex signals within the tumor microenvironment that orchestrate proliferation and invasive processes. The mechanical properties of the extracellular matrix (ECM) within this microenvironment has been demonstrated to influence growth and the migratory phenotype that precedes invasion. Here we present the integration of a label-free quantitative phase imaging technique, spatial light interference microscopy (SLIM)—with protein-conjugated hydrogel substrates—to explore how the stiffness of the ECM influences melanoma cells of varying metastatic potential. Melanoma cells of high metastatic potential demonstrate increased growth and velocity characteristics relative to cells of low metastatic potential. Cell velocity in the highly metastatic population shows a relative stability at higher matrix stiffness suggesting adoption of migratory routines that are independent of mechanics to facilitate invasion. The use of SLIM and engineered substrates provides a new approach to characterize the invasive properties of live cells as a function of microenvironment parameters. This work provides fundamental insight into the relationship between growth, migration and metastatic potential, and provides a new tool for profiling cancer cells for clinical grading and development of patient-specific therapeutic regimens.

     
    more » « less
  4. Abstract

    Melanoma is a highly heterogeneous tumor for which recent evidence supports a model of dynamic stemness. Melanoma cells might temporally acquire tumor-initiating properties or switch from a status of tumor-initiating cells (TICs) to a more differentiated one depending on the tumor context. However, factors driving these functional changes are still unknown. We focused on the role of cyto/chemokines in shaping TICs isolated directly from tumor specimens of two melanoma patients, namely Me14346S and Me15888S. We analyzed the secretion profile of TICs and of their corresponding melanoma differentiated cells and we tested the ability of cyto/chemokines to influence TIC self-renewal and differentiation. We found that TICs, grown in vitro as melanospheres, had a complex secretory profile as compared to their differentiated counterparts. Some factors, such as CCL-2 and IL-8, also produced by adherent melanoma cells and melanocytes did not influence TIC properties. Conversely, IL-6, released by differentiated cells, reduced TIC self-renewal and induced TIC differentiation while IL-10, produced by Me15888S, strongly promoted TIC self-renewal through paracrine/autocrine actions. Complete neutralization of IL-10 activity by gene silencing and antibody-mediated blocking of the IL-10Rα was required to sensitize Me15888S to IL-6-induced differentiation. For the first time these results show that functional heterogeneity of melanoma could be directly influenced by inflammatory and suppressive soluble factors, with IL-6 favoring TIC differentiation, and IL-10 supporting TIC self-renewal. Thus, understanding the tumor microenvironment (TME) role in modulating melanoma TIC phenotype is fundamental to identifying novel therapeutic targets to achieve long-lasting regression of metastatic melanoma.

     
    more » « less
  5. Modeling metastasis in vivo with animals is a priority for both revealing mechanisms of tumor dissemination and developing therapeutic methods. While conventional intravenous injection of tumor cells provides an efficient and consistent system for studying tumor cell extravasation and colonization, studying spontaneous metastasis derived from orthotopic tumor sites has the advantage of modeling more aspects of the metastatic cascade, but is challenging as it is difficult to detect small numbers of metastatic cells. In this work, we developed an approach for quantifying spontaneous metastasis in the syngeneic mouse B16 system using real time PCR. We first transduced B16 cells with lentivirus expressing firefly luciferase Luc2 gene for bioluminescence imaging. Next, we developed a real time quantitative PCR (qPCR) method for the detection of luciferase-expressing, metastatic tumor cells in mouse lungs and other organs. To illustrate the approach, we quantified lung metastasis in both spontaneous and experimental scenarios using B16F0 and B16F10 cells in C57BL/6Ncrl and NOD-Scid Gamma (NSG) mice. We tracked B16 melanoma metastasis with both bioluminescence imaging and qPCR, which were found to be self-consistent. Using this assay, we can quantitatively detect one Luc2 positive tumor cell out of 10 4 tissue cells, which corresponds to a metastatic burden of 1.8 × 10 4 metastatic cells per whole mouse lung. More importantly, the qPCR method was at least a factor of 10 more sensitive in detecting metastatic cell dissemination and should be combined with bioluminescence imaging as a high-resolution, end-point method for final metastatic cell quantitation. Given the rapid growth of primary tumors in many mouse models, assays with improved sensitivity can provide better insight into biological mechanisms that underpin tumor metastasis. 
    more » « less