skip to main content


Title: Tracing Birth Properties of Stars with Abundance Clustering
Abstract

To understand the formation and evolution of the Milky Way disk, we must connect its current properties to its past. We explore hydrodynamical cosmological simulations to investigate how the chemical abundances of stars might be linked to their origins. Using hierarchical clustering of abundance measurements in two Milky Way–like simulations with distributed and steady star formation histories, we find that groups of chemically similar stars comprise different groups in birth place (Rbirth) and time (age). Simulating observational abundance errors (0.05 dex), we find that to trace distinct groups of (Rbirth, age) requires a large vector of abundances. Using 15 element abundances (Fe, O, Mg, S, Si, C, P, Mn, Ne, Al, N, V, Ba, Cr, Co), up to ≈10 groups can be defined with ≈25% overlap in (Rbirth, age). We build a simple model to show that in the context of these simulations, it is possible to infer a star’s age andRbirthfrom abundances with precisions of ±0.06 Gyr and ±1.17 kpc, respectively. We find that abundance clustering is ineffective for a third simulation, where low-αstars form distributed in the disk and early high-αstars form more rapidly in clumps that sink toward the Galactic center as their constituent stars evolve to enrich the interstellar medium. However, this formation path leads to large age dispersions across the [α/Fe]–[Fe/H] plane, which is inconsistent with the Milky Way’s observed properties. We conclude that abundance clustering is a promising approach toward charting the history of our Galaxy.

 
more » « less
Award ID(s):
1715582
NSF-PAR ID:
10361559
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
924
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 60
Size(s):
["Article No. 60"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Observations of the Milky Way’s low- α disk show that several element abundances correlate with age at fixed metallicity, with unique slopes and small scatters around the age–[X/Fe] relations. In this study, we turn to simulations to explore the age–[X/Fe] relations for the elements C, N, O, Mg, Si, S, and Ca that are traced in a FIRE-2 cosmological zoom-in simulation of a Milky Way–like galaxy, m12i, and understand what physical conditions give rise to the observed age–[X/Fe] trends. We first explore the distributions of mono-age populations in their birth and current locations, [Fe/H], and [X/Fe], and find evidence for inside-out radial growth for stars with ages <7 Gyr. We then examine the age–[X/Fe] relations across m12i’s disk and find that the direction of the trends agrees with observations, apart from C, O, and Ca, with remarkably small intrinsic scatters, σ int (0.01 − 0.04 dex). This σ int measured in the simulations is also metallicity dependent, with σ int ≈ 0.025 dex at [Fe/H] = −0.25 dex versus σ int ≈ 0.015 dex at [Fe/H] = 0 dex, and a similar metallicity dependence is seen in the GALAH survey for the elements in common. Additionally, we find that σ int is higher in the inner galaxy, where stars are older and formed in less chemically homogeneous environments. The age–[X/Fe] relations and the small scatter around them indicate that simulations capture similar chemical enrichment variance as observed in the Milky Way, arising from stars sharing similar element abundances at a given birth place and time. 
    more » « less
  2. ABSTRACT Using a sample of red giant stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16, we infer the conditional distribution $p([\alpha /{\rm Fe}]\, |\, [{\rm Fe}/{\rm H}])$ in the Milky Way disk for the α-elements Mg, O, Si, S, and Ca. In each bin of [Fe/H] and Galactocentric radius R, we model p([α/Fe]) as a sum of two Gaussians, representing ‘low-α’ and ‘high-α’ populations with scale heights $z_1=0.45\, {\rm kpc}$ and $z_2=0.95\, {\rm kpc}$, respectively. By accounting for age-dependent and z-dependent selection effects in APOGEE, we infer the [α/Fe] distributions that would be found for a fair sample of long-lived stars covering all z. Near the Solar circle, this distribution is bimodal at sub-solar [Fe/H], with the low-α and high-α peaks clearly separated by a minimum at intermediate [α/Fe]. In agreement with previous results, we find that the high-α population is more prominent at smaller R, lower [Fe/H], and larger |z|, and that the sequence separation is smaller for Si and Ca than for Mg, O, and S. We find significant intrinsic scatter in [α/Fe] at fixed [Fe/H] for both the low-α and high-α populations, typically ∼0.04-dex. The means, dispersions, and relative amplitudes of this two-Gaussian description, and the dependence of these parameters on R, [Fe/H], and α-element, provide a quantitative target for chemical evolution models and a test for hydrodynamic simulations of disk galaxy formation. We argue that explaining the observed bimodality will probably require one or more sharp transitions in the disk’s gas accretion, star formation, or outflow history in addition to radial mixing of stellar populations. 
    more » « less
  3. Abstract

    We present new maps of the Milky Way disk showing the distribution of metallicity ([Fe/H]),α-element abundances ([Mg/Fe]), and stellar age, using a sample of 66,496 red giant stars from the final data release (DR17) of the Apache Point Observatory Galactic Evolution Experiment survey. We measure radial and vertical gradients, quantify the distribution functions for age and metallicity, and explore chemical clock relations across the Milky Way for the low-αdisk, high-αdisk, and total population independently. The low-αdisk exhibits a negative radial metallicity gradient of −0.06 ± 0.001 dex kpc−1, which flattens with distance from the midplane. The high-αdisk shows a flat radial gradient in metallicity and age across nearly all locations of the disk. The age and metallicity distribution functions shift from negatively skewed in the inner Galaxy to positively skewed at large radius. Significant bimodality in the [Mg/Fe]–[Fe/H] plane and in the [Mg/Fe]–age relation persist across the entire disk. The age estimates have typical uncertainties of ∼0.15 in log(age) and may be subject to additional systematic errors, which impose limitations on conclusions drawn from this sample. Nevertheless, these results act as critical constraints on galactic evolution models, constraining which physical processes played a dominant role in the formation of the Milky Way disk. We discuss how radial migration predicts many of the observed trends near the solar neighborhood and in the outer disk, but an additional more dramatic evolution history, such as the multi-infall model or a merger event, is needed to explain the chemical and age bimodality elsewhere in the Galaxy.

     
    more » « less
  4. Abstract

    We apply a novel statistical analysis to measurements of 16 elemental abundances in 34,410 Milky Way disk stars from the final data release (DR17) of APOGEE-2. Building on recent work, we fit median abundance ratio trends [X/Mg] versus [Mg/H] with a 2-process model, which decomposes abundance patterns into a “prompt” component tracing core-collapse supernovae and a “delayed” component tracing Type Ia supernovae. For each sample star, we fit the amplitudes of these two components, then compute the residuals Δ[X/H] from this two-parameter fit. The rms residuals range from ∼0.01–0.03 dex for the most precisely measured APOGEE abundances to ∼0.1 dex for Na, V, and Ce. Thecorrelationsof residuals reveal a complex underlying structure, including a correlated element group comprised of Ca, Na, Al, K, Cr, and Ce and a separate group comprised of Ni, V, Mn, and Co. Selecting stars poorly fit by the 2-process model reveals a rich variety of physical outliers and sometimes subtle measurement errors. Residual abundances allow for the comparison of populations controlled for differences in metallicity and [α/Fe]. Relative to the main disk (R= 3–13 kpc), we find nearly identical abundance patterns in the outer disk (R= 15–17 kpc), 0.05–0.2 dex depressions of multiple elements in LMC and Gaia Sausage/Enceladus stars, and wild deviations (0.4–1 dex) of multiple elements inωCen. The residual abundance analysis opens new opportunities for discovering chemically distinctive stars and stellar populations, for empirically constraining nucleosynthetic yields, and for testing chemical evolution models that include stochasticity in the production and redistribution of elements.

     
    more » « less
  5. ABSTRACT

    Understanding the assembly of our Galaxy requires us to also characterize the systems that helped build it. In this work, we accomplish this by exploring the chemistry of accreted halo stars from Gaia-Enceladus/Gaia-Sausage (GES) selected in the infrared from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16. We use high resolution optical spectra for 62 GES stars to measure abundances in 20 elements spanning the α, Fe-peak, light, odd-Z, and notably, the neutron-capture groups of elements to understand their trends in the context of and in contrast to the Milky Way and other stellar populations. Using these derived abundances we find that the optical and the infrared abundances agree to within 0.15 dex except for O, Co, Na, Cu, and Ce. These stars have enhanced neutron-capture abundance trends compared to the Milky Way, and their [Eu/Mg] and neutron-capture abundance ratios (e.g. [Y/Eu], [Ba/Eu], [Zr/Ba], [La/Ba], and [Nd/Ba]) point to r-process enhancement and a delay in s-process enrichment. Their [α/Fe] trend is lower than the Milky Way trend for [Fe/H] > −1.5 dex, similar to previous studies of GES stars and consistent with the picture that these stars formed in a system with a lower rate of star formation. This is further supported by their depleted abundances in Ni, Na, and Cu abundances, again, similar to previous studies of low-α stars with accreted origins.

     
    more » « less