skip to main content

Title: Mafic explosive volcanism at Llaima Volcano: 3D x-ray microtomography reconstruction of pyroclasts to constrain shallow conduit processes

Mafic volcanic activity is dominated by effusive to mildly explosive eruptions. Plinian and ignimbrite-forming mafic eruptions, while rare, are also possible; however, the conditions that promote such explosivity are still being explored. Eruption style is determined by the ability of gas to escape as magma ascends, which tends to be easier in low-viscosity, mafic magmas. If magma permeability is sufficiently high to reduce bubble overpressure during ascent, volatiles may escape from the magma, inhibiting violent explosive activity. In contrast, if the permeability is sufficiently low to retain the gas phase within the magma during ascent, bubble overpressure may drive magma fragmentation. Rapid ascent may induce disequilibrium crystallization, increasing viscosity and affecting the bubble network with consequences for permeability, and hence, explosivity. To explore the conditions that promote strongly explosive mafic volcanism, we combine microlite textural analyses with synchrotron x-ray computed microtomography of 10 pyroclasts from the 12.6 ka mafic Curacautín Ignimbrite (Llaima Volcano, Chile). We quantify microlite crystal size distributions (CSD), microlite number densities, porosity, bubble interconnectivity, bubble number density, and geometrical properties of the porous media to investigate the role of magma degassing processes at mafic explosive eruptions. We use an analytical technique to estimate permeability and tortuosity by more » combing the Kozeny-Carman relationship, tortuosity factor, and pyroclast vesicle textures. The groundmass of our samples is composed of up to 44% plagioclase microlites, > 85% of which are < 10 µm in length. In addition, we identify two populations of vesicles in our samples: (1) a convoluted interconnected vesicle network produced by extensive coalescence of smaller vesicles (> 99% of pore volume), and (2) a population of very small and completely isolated vesicles (< 1% of porosity). Computed permeability ranges from 3.0 × 10−13to 6.3 × 10−12m2, which are lower than the similarly explosive mafic eruptions of Tarawera (1886; New Zealand) and Etna (112 BC; Italy). The combination of our CSDs, microlite number densities, and 3D vesicle textures evidence rapid ascent that induced high disequilibrium conditions, promoting rapid syn-eruptive crystallization of microlites within the shallow conduit. We interpret that microlite crystallization increased viscosity while simultaneously forcing bubbles to deform as they grew together, resulting in the permeable by highly tortuous network of vesicles. Using the bubble number densities for the isolated vesicles (0.1-3−3 × 104 bubbles per mm3), we obtain a minimum average decompression rate of 1.4 MPa/s. Despite the textural evidence that the Curacautín magma reached the percolation threshold, we propose that rapid ascent suppressed outgassing and increased bubble overpressures, leading to explosive fragmentation. Further, using the porosity and permeability of our samples, we estimated that a bubble overpressure > 5 MPa could have been sufficient to fragment the Curacautín magma. Other mafic explosive eruptions report similar disequilibrium conditions induced by rapid ascent rate, implying that syn-eruptive disequilibrium conditions may control the explosivity of mafic eruptions more generally.

« less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Bulletin of Volcanology
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. Bubble and crystal textures evolve during magma ascent, altering properties that control ascent such as permeability and viscosity. Eruption style results from feedbacks between ascent, bubble nucleation and growth, microlite crystallization, and gas loss, all processes recorded in pyroclasts. We show that pyroclasts of the mafic Curacautín ignimbrite of Llaima volcano, Chile, record a history of repeated autobrecciation, fusing, and crystallization. We identified pyroclasts with domains of heterogeneous vesicle textures in sharp contact with one another that are overprinted by extensive microlite crystallization. Broken crystals with long axes (l) >10 μm record fragmentation events during the eruption. A second population of unbroken microlites with l ≤10 μm overprint sutures between fused domains, suggesting the highly crystalline groundmass formed at shallow depths after autobrecciation and fusing. Nearly all pyroclasts contain plutonic and ancestral Llaima lithics as inclusions, implying that fusing occurs from a few kilometers depth to as shallow as the surface. We propose that Curacautín ignimbrite magma autobrecciated during ascent and proto-pyroclasts remained melt rich enough to fuse together. Lithics from the conduit margins were entrained into the proto-pyroclasts before fusing. Autobrecciation broke existing phenocrysts and microlites; rapid post-fusing crystallization then generated the highly crystalline groundmass. This proposed conduit processmore »has implications for interpreting the products of mafic explosive eruptions.« less
  2. Abstract The Okataina Volcanic Centre (OVC), located in the Taupo Volcanic Zone, New Zealand, is a dominantly rhyolitic magmatic system in an arc setting, where eruptions are thought to be driven by mafic recharge. Here, Sr–Pb isotopes, and compositional and textural variations in plagioclase phenocrysts from 10 rhyolitic deposits (two caldera, one immediately post-caldera, four intra-caldera, and three extra-caldera) are used to investigate the OVC magmatic system and identify the sources and assimilants within this diverse mush zone. Plagioclase interiors exhibit normal and reverse zoning, and are commonly in disequilibrium with their accompanying glass, melt inclusions, and whole-rock compositions. This indicates that the crystals nucleated in melts that differed from their carrier magma. In contrast, the outermost rims of crystals exhibit normal zoning that is compositionally consistent with growth in cooling and fractionating melts just prior to eruption. At the intra-crystal scale, the total suite of 87Sr/86Sr ratios are highly variable (0·7042–0·7065 ± 0·0004 average 2SE); however, the majority (95 %) of the crystals are internally homogeneous within error. At whole-crystal scale (where better precision is obtained), 87Sr/86Sr ratios are much more homogeneous (0·70512–0·70543 ± 0·00001 average 2SE) and overlap with their host whole-rock Sr isotopic ratios. Whole-crystal Pb isotopic ratios also largely overlap withmore »whole-rock Pb ratios. The plagioclase and whole-rock isotopic compositions indicate significant crustal assimilation (≥20 %) of Torlesse-like metasediments (local basement rock) by a depleted mid-ocean ridge mantle magma source, and Pb isotopes require variable fluid-dominant subduction flux. The new data support previous petrogenetic models for OVC magmas that require crystal growth in compositionally and thermally distinct magmas within a complex of disconnected melt-and-mush reservoirs. These reservoirs were rejuvenated by underplating basaltic magmas that serve as an eruption trigger. However, the outermost rims of the plagioclase imply that interaction between silicic melts and eruption-triggering mafic influx is largely limited to heat and volatile transfer, and results in rapid mobilization and syn-eruption mixing of rhyolitic melts. Finally, relatively uniform isotopic compositions of plagioclase indicate balanced contributions from the crust and mantle over the lifespan of the OVC magmatic system.« less
  3. Abstract

    Caldera-forming eruptions of mushy silicic magma are among the most catastrophic natural events on Earth. In such magmas, crystals form an interlocking framework when their content reaches critical thresholds, resulting in the dramatic increase in viscous resistance to flow. Here, we propose a new mechanism for the ascent of mushy magma based on microstructural observations of crystal-rich silicic pumices and lavas from the Central Andes and decompression experiments. Microstructural data include spherical vesicles and jigsaw-puzzle association of broken crystals in pumices, whereas there is limited breakage of crystals in lavas. These observations insinuate that shearing of magma during ascent was limited. Decompression experiments reveal contrasting interaction between growing gas bubbles and the crystal framework in crystal-rich magma. Under slow decompression typical of effusive eruptions, gas extraction is promoted, whereas under rapid decompression, bubbles are retained and the crystal framework collapses. This feedback between decompression rate, retention of gas bubbles, and integrity of the crystal framework leads to strong non-linearity between magma decompression rate and eruption explosivity. We extend these findings to caldera-forming eruptions of crystal-rich magma where large overpressures are induced by caldera-collapse, resulting in magma plug-flow, rapid decompression facilitated by shear-localization at conduit margins, and explosive eruption.

  4. Abstract

    Silicic submarine volcanic eruptions can produce large volumes of pumices that may rise buoyantly to the ocean surface and/or sink to the seafloor. For eruptions that release significant volumes of pumice into rafts, the proximal to medial submarine geologic record is thus depleted in large volumes of pumice that would have sedimented closer to source in any subaerial eruption. The 2012 eruption of Havre volcano, a submarine volcano in the Kermadec Arc, presents a unique opportunity to study the partitioning of well-constrained rafted and seafloor pumice. Macro- and microtextural analysis was performed on clasts from the Havre pumice raft and from coeval pumiceous seafloor units around the Havre caldera. The raft and seafloor clasts have indistinguishable macrotextures, componentry, and vesicularity ranges. Microtextural differences are apparent as raft pumices have higher vesicle number densities (109 cm−3vs. 108 cm−3) and significantly lower pore space connectivity (0.3–0.95 vs. 0.9–1.0) than seafloor pumices. Porosity analysis shows that high vesicularity raft pumices required trapping of gas in the connected porosity to remain afloat, whereas lower vesicularity raft pumices could float just from gas within isolated porosity. Measurements of minimum vesicle throat openings further show that raft pumices have a larger proportion of small vesicle throats thanmore »seafloor pumices. Narrow throats increase gas trapping as a result of higher capillary pressures acting over gas–water interfaces between vesicles and lower capillary number inhibiting gas bubble escape. Differences in isolated porosity and pore throat distribution ultimately control whether pumices sink or float and thus whether pumice deposits are preserved or not on the seafloor.

    « less
  5. The unexpected intersection of rhyolitic magma and retrieval of quenched glass particles at the Iceland Deep Drilling Project-1 geothermal well in 2009 at Krafla, Iceland, provide unprecedented opportunities to characterize the genesis, storage, and behavior of subsurface silicic magma. In this study, we analyzed the complete time series of glass particles retrieved after magma was intersected, in terms of distribution, chemistry, and vesicle textures. Detailed analysis of the particles revealed them to represent bimodal rhyolitic magma compositions and textures. Early-retrieved clear vesicular glass has higher SiO2, crystal, and vesicle contents than later-retrieved dense brown glass. The vesicle size and distribution of the brown glass also reveal several vesicle populations. The glass particles vary in δD from −120‰ to −80‰ and have dissolved water contents spanning 1.3−2 wt%, although the majority of glass particles exhibit a narrower range. Vesicular textures indicate that volatile overpressure release predominantly occurred prior to late-stage magma ascent, and we infer that vesiculation occurred in response to drilling-induced decompression. The textures and chemistry of the rhyolitic glasses are consistent with variable partial melting of host felsite. The drilling recovery sequence indicates that the clear magma (lower degree partial melt) overlays the brown magma (higher degree partial melt).more »The isotopes and water species support high temperature hydration of these partial melts by a mixed meteoric and magmatic composition fluid. The textural evidence for partial melting and lack of crystallization imply that magma production is ongoing, and the growing magma body thus has a high potential for geothermal energy extraction. In summary, transfer of heat and fluids into felsite triggered variable degrees of felsite partial melting and produced a hydrated rhyolite magma with chemical and textural heterogeneities that were then enhanced by drilling perturbations. Such partial melting could occur extensively in the crust above magma chambers, where complex intrusive systems can form and supply the heat and fluids required to re-melt the host rock. Our findings emphasize the need for higher resolution geophysical monitoring of restless calderas both for hazard assessment and geothermal prospecting. We also provide insight into how shallow silicic magma reacts to drilling, which could be key to future exploration of the use of magma bodies in geothermal energy.« less