skip to main content


Title: The Complete Local-Volume Groups Sample – IV. Star formation and gas content in group-dominant galaxies
ABSTRACT

Using multiband data, we examine the star formation activity of the nearby group-dominant early-type galaxies of the Complete Local-volume Groups Sample (CLoGS) and the relation between star formation, gas content, and local environment. Only a small fraction of the galaxies (13 per cent; 6/47) are found to be far-ultraviolet (FUV) bright, with FUV to near-infrared colours indicative of recent active star formation (NGC 252, NGC 924, NGC 940, NGC 1106, NGC 7252, and ESO 507-25). These systems are lenticulars presenting the highest FUV-specific star formation rates in the sample (sSFRFUV > 5 × 1013 yr−1), significant cold gas reservoirs [M(H2) = 0.5-61 × 108 M⊙], reside in X-ray faint groups, and none hosts a powerful radio active galactic nucleus (AGN) (P$_{1.4\mathrm{ GHz}}\, \lt 10^{23}$ W Hz−1). The majority of the group-dominant galaxies (87 per cent; 41/47) are FUV faint, with no significant star formation, classified in most cases as spheroids based on their position on the infrared star-forming main sequence (87 per cent; 46/53). Examining the relationships between radio power, SFRFUV, and stellar mass, we find a lack of correlation that suggests a combination of origins for the cool gas in these galaxies, including stellar mass loss, cooling from the intra-group medium (IGrM) or galaxy halo, and acquisition through mergers or tidal interactions. X-ray bright systems, in addition to hosting radio powerful AGN, have a range of SFRs but, with the exception of NGC 315, do not rise to the highest rates seen in the FUV bright systems. We suggest that central group galaxy evolution is linked to gas mass availability, with star formation favoured in the absence of a group-scale X-ray halo, but AGN jet launching is more likely in systems with a cooling IGrM.

 
more » « less
NSF-PAR ID:
10361633
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
510
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4191-4207
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present a combined radio/X-ray study of six massive galaxy clusters, aimed at determining the potential for heating of the intra-cluster medium (ICM) by non-central radio galaxies. Since X-ray cavities associated with the radio lobes of non-central galaxies are generally not detectable, we use Giant Metrewave Radio Telescope 610 MHz observations to identify jet sources and estimate their size, and Chandra data to estimate the pressure of the surrounding ICM. In the radio, we detect 4.5 per cent of galaxies above the spectroscopic survey limit (M$^{*}_{K}$ + 2.0) of the Arizona cluster redshift survey (ACReS) that covers five of our six clusters. Approximately one-tenth of these are extended radio sources. Using star formation (SF) rates determined from mid-infrared data, we estimate the expected contribution to radio luminosity from the stellar population of each galaxy, and find that most of the unresolved or poorly resolved radio sources are likely SF dominated. The relatively low frequency and good spatial resolution of our radio data allows us to trace SF emission down to galaxies of stellar mass ∼10 9.5 M⊙. We estimate the enthalpy of the (AGN-dominated) jet/lobe and tailed sources, and place limits on the energy available from unresolved radio jets. We find jet powers in the range ∼1043 to 1046 erg s−1, comparable to those of brightest cluster galaxies. Our results suggest that while cluster-central sources are the dominant factor balancing ICM cooling over the long-term, non-central sources may have a significant impact, and that further investigation is possible and warranted.

     
    more » « less
  2. ABSTRACT

    We aim to determine the intrinsic far-Infrared (far-IR) emission of X-ray-luminous quasars over cosmic time. Using a 16 deg2 region of the Stripe 82 field surveyed by XMM-Newton and Herschel Space Observatory, we identify 2905 X-ray luminous (LX > 1042 erg/s) active galactic nuclei (AGN) in the range z ≈ 0–3. The IR is necessary to constrain host galaxy properties such as star formation rate (SFR) and gas mass. However, only 10 per cent of our AGN are detected both in the X-ray and IR. Because 90 per cent of the sample is undetected in the far-IR by Herschel, we explore the mean IR emission of these undetected sources by stacking their Herschel/SPIRE images in bins of X-ray luminosity and redshift. We create stacked spectral energy distributions from the optical to the far-IR, and estimate the median SFR, dust mass, stellar mass, and infrared luminosity using a fitting routine. We find that the stacked sources on average have similar SFR/Lbol ratios as IR detected sources. The majority of our sources fall on or above the main sequence line suggesting that X-ray selection alone does not predict the location of a galaxy on the main sequence. We also find that the gas depletion time scales of our AGN are similar to those of dusty star forming galaxies. This suggests that X-ray selected AGN host high star formation and that there are no signs of declining star formation.

     
    more » « less
  3. ABSTRACT We present spatially resolved kinematic measurements of stellar and ionized gas components of dwarf galaxies in the stellar mass range $10^{8.5}\!-\!10^{10} \, \mathrm{M}_{\odot }$, selected from Sloan Digital Sky Survey DR7 and DR8 and followed up with Keck/Low-Resolution Imaging Spectrometer spectroscopy. We study the potential effects of active galactic nuclei (AGNs) on Galaxy-wide gas kinematics by comparing rotation curves of 26 Galaxies containing AGNs, and 19 control Galaxies with no optical or infrared signs of AGNs. We find a strong association between AGN activity and disturbed gas kinematics in the host Galaxies. While star-forming Galaxies in this sample tend to have orderly gas discs that co-rotate with the stars, 73 per cent of the AGNs have disturbed gas. We find that 5 out of 45 Galaxies have gaseous components in counter-rotation with their stars, and all Galaxies exhibiting counter-rotation contain AGNs. Six out of seven isolated Galaxies with disturbed ionized gas host AGNs. At least three AGNs fall clearly below the stellar–halo mass relation, which could be interpreted as evidence for ongoing star formation suppression. Taken together, these results provide new evidence supporting the ability of AGN to influence gas kinematics and suppress star formation in dwarf galaxies. This further demonstrates the importance of including AGN as a feedback mechanism in galaxy formation models in the low-mass regime. 
    more » « less
  4. ABSTRACT

    Powerful outflows are thought to play a critical role in galaxy evolution and black hole growth. We present the first large-scale systematic study of ionized outflows in paired galaxies and post-mergers compared to a robust control sample of isolated galaxies. We isolate the impact of the merger environment to determine if outflow properties depend on merger stage. Our sample contains ∼4000 paired galaxies and ∼250 post-mergers in the local universe (0.02 ≤ z ≤ 0.2) from the Sloan Digital Sky Survey Data Release 7 (SDSS DR 7) matched in stellar mass, redshift, local density of galaxies, and [O iii] λ5007 luminosity to a control sample of isolated galaxies. By fitting the [O iii] λ5007 line, we find ionized outflows in ∼15 per cent of our entire sample. Outflows are much rarer in star-forming galaxies compared to active galactic nuclei (AGNs), and outflow incidence and velocity increase with [O iii] λ5007 luminosity. Outflow incidence is significantly elevated in the optical + mid-infrared selected AGN compared to purely optical AGN; over 60 per cent show outflows at the highest luminosities ($L_{\mathrm{[OIII]~\lambda 5007}}\, \gtrsim$ 1042 erg s−1), suggesting mid-infrared AGN selection favours galaxies with powerful outflows, at least for higher [O iii] λ5007 luminosities. However, we find no statistically significant difference in outflow incidence, velocity, and luminosity in mergers compared to isolated galaxies, and there is no dependence on merger stage. Therefore, while interactions are predicted to drive gas inflows and subsequently trigger nuclear star formation and accretion activity, when the power source of the outflow is controlled for, the merging environment has no further impact on the large-scale ionized outflows as traced by [O iii] λ5007.

     
    more » « less
  5. ABSTRACT

    Cosmological simulations are reaching the resolution necessary to study ultra-faint dwarf galaxies. Observations indicate that in small populations, the stellar initial mass function (IMF) is not fully populated; rather, stars are sampled in a way that can be approximated as coming from an underlying probability density function. To ensure the accuracy of cosmological simulations in the ultra-faint regime, we present an improved treatment of the IMF. We implement a self-consistent, stochastically populated IMF in cosmological hydrodynamic simulations. We test our method using high-resolution simulations of a Milky Way halo, run to z = 6, yielding a sample of nearly 100 galaxies. We also use an isolated dwarf galaxy to investigate the resulting systematic differences in galaxy properties. We find that a stochastic IMF in simulations makes feedback burstier, strengthening feedback, and quenching star formation earlier in small dwarf galaxies. For galaxies in haloes with mass ≲ 108.5 M⊙, a stochastic IMF typically leads to lower stellar mass compared to a continuous IMF, sometimes by more than an order of magnitude. We show that existing methods of ensuring discrete supernovae incorrectly determine the mass of the star particle and its associated feedback. This leads to overcooling of surrounding gas, with at least ∼10 per cent higher star formation and ∼30 per cent higher cold gas content. Going forwards, to accurately model dwarf galaxies and compare to observations, it will be necessary to incorporate a stochastically populated IMF that samples the full spectrum of stellar masses.

     
    more » « less