skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: A stochastically sampled IMF alters the stellar content of simulated dwarf galaxies
ABSTRACT Cosmological simulations are reaching the resolution necessary to study ultra-faint dwarf galaxies. Observations indicate that in small populations, the stellar initial mass function (IMF) is not fully populated; rather, stars are sampled in a way that can be approximated as coming from an underlying probability density function. To ensure the accuracy of cosmological simulations in the ultra-faint regime, we present an improved treatment of the IMF. We implement a self-consistent, stochastically populated IMF in cosmological hydrodynamic simulations. We test our method using high-resolution simulations of a Milky Way halo, run to z = 6, yielding a sample of nearly 100 galaxies. We also use an isolated dwarf galaxy to investigate the resulting systematic differences in galaxy properties. We find that a stochastic IMF in simulations makes feedback burstier, strengthening feedback, and quenching star formation earlier in small dwarf galaxies. For galaxies in haloes with mass ≲ 108.5 M⊙, a stochastic IMF typically leads to lower stellar mass compared to a continuous IMF, sometimes by more than an order of magnitude. We show that existing methods of ensuring discrete supernovae incorrectly determine the mass of the star particle and its associated feedback. This leads to overcooling of surrounding gas, with at least ∼10 per cent higher star formation and ∼30 per cent higher cold gas content. Going forwards, to accurately model dwarf galaxies and compare to observations, it will be necessary to incorporate a stochastically populated IMF that samples the full spectrum of stellar masses.  more » « less
Award ID(s):
1813871
PAR ID:
10129060
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
492
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 8-21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Many phenomenologically successful cosmological simulations employ kinetic winds to model galactic outflows. Yet systematic studies of how variations in kinetic wind scalings might alter observable galaxy properties are rare. Here we employ gadget-3 simulations to study how the baryon cycle, stellar mass function, and other galaxy and CGM predictions vary as a function of the assumed outflow speed and the scaling of the mass-loading factor with velocity dispersion. We design our fiducial model to reproduce the measured wind properties at 25 per cent of the virial radius from the Feedback In Realistic Environments simulations. We find that a strong dependence of η ∼ σ5 in low-mass haloes with $$\sigma \lt 106\mathrm{\, km\, s^{-1}}$$ is required to match the faint end of the stellar mass functions at $$z$$ > 1. In addition, faster winds significantly reduce wind recycling and heat more halo gas. Both effects result in less stellar mass growth in massive haloes and impact high ionization absorption in halo gas. We cannot simultaneously match the stellar content at $$z$$ = 2 and 0 within a single model, suggesting that an additional feedback source such as active galactic nucleus might be required in massive galaxies at lower redshifts, but the amount needed depends strongly on assumptions regarding the outflow properties. We run a 50 $$\mathrm{Mpc}\, h^{-1}$$, 2 × 5763 simulation with our fiducial parameters and show that it matches a range of star-forming galaxy properties at $$z$$ ∼ 0–2. 
    more » « less
  2. ABSTRACT We present spatially resolved kinematic measurements of stellar and ionized gas components of dwarf galaxies in the stellar mass range $$10^{8.5}\!-\!10^{10} \, \mathrm{M}_{\odot }$$, selected from Sloan Digital Sky Survey DR7 and DR8 and followed up with Keck/Low-Resolution Imaging Spectrometer spectroscopy. We study the potential effects of active galactic nuclei (AGNs) on Galaxy-wide gas kinematics by comparing rotation curves of 26 Galaxies containing AGNs, and 19 control Galaxies with no optical or infrared signs of AGNs. We find a strong association between AGN activity and disturbed gas kinematics in the host Galaxies. While star-forming Galaxies in this sample tend to have orderly gas discs that co-rotate with the stars, 73 per cent of the AGNs have disturbed gas. We find that 5 out of 45 Galaxies have gaseous components in counter-rotation with their stars, and all Galaxies exhibiting counter-rotation contain AGNs. Six out of seven isolated Galaxies with disturbed ionized gas host AGNs. At least three AGNs fall clearly below the stellar–halo mass relation, which could be interpreted as evidence for ongoing star formation suppression. Taken together, these results provide new evidence supporting the ability of AGN to influence gas kinematics and suppress star formation in dwarf galaxies. This further demonstrates the importance of including AGN as a feedback mechanism in galaxy formation models in the low-mass regime. 
    more » « less
  3. Abstract We predict the stellar mass–halo mass (SMHM) relationship for dwarf galaxies, using simulated galaxies with peak halo masses of M peak = 10 11 M ⊙ down into the ultra-faint dwarf range to M peak = 10 7 M ⊙ . Our simulated dwarfs have stellar masses of M star = 790 M ⊙ to 8.2 × 10 8 M ⊙ , with corresponding V -band magnitudes from −2 to −18.5. For M peak > 10 10 M ⊙ , the simulated SMHM relationship agrees with literature determinations, including exhibiting a small scatter of 0.3 dex. However, the scatter in the SMHM relation increases for lower-mass halos. We first present results for well-resolved halos that contain a simulated stellar population, but recognize that whether a halo hosts a galaxy is inherently mass resolution dependent. We thus adopt a probabilistic model to populate “dark” halos below our resolution limit to predict an “intrinsic” slope and scatter for the SMHM relation. We fit linearly growing log-normal scatter in stellar mass, which grows to more than 1 dex at M peak = 10 8 M ⊙ . At the faintest end of the SMHM relation probed by our simulations, a galaxy cannot be assigned a unique halo mass based solely on its luminosity. Instead, we provide a formula to stochastically populate low-mass halos following our results. Finally, we show that our growing log-normal scatter steepens the faint-end slope of the predicted stellar mass function. 
    more » « less
  4. We investigate the impact of bursty star formation on several galaxy scaling relations of dwarf galaxies using the $$\texttt{GRUMPY}$$ galaxy formation model. While this model reproduces the star formation rate (SFR)-stellar mass, stellar mass-gas mass, and stellar mass-metallicity relations, the scatter of these relations in the original model is smaller than observed. We explore the effects of additional stochasticity of SFR on the scaling relations using a model that reproduces the level of SFR burstiness in high-resolution zoom-in simulations. The additional SFR stochasticity increases the scatter in the SFR-stellar mass relation to a level similar to that exhibited by most nearby dwarf galaxies. The most extreme observed starbursting dwarfs, however, require higher levels of SFR stochasticity. We find that bursty star formation increases the scatter in the colour-magnitude distribution (CMD) for brighter dwarf galaxies $$(M_V < -12)$$ to the observed level, but not for fainter ones for which scatter remains significantly smaller than observed. This is due to the predominant old stellar populations in these faint model galaxies and their generally declining SFR over the past 10 Gyrs, rather than quenching caused by reionization. We examine the possibility that the colour scatter is due to scatter in metallicity, but show that the level of scatter required leads to an overestimation of scatter in the metallicity-mass relation. This illustrates that the scatter of observed scaling relations in the dwarf galaxy regime represents a powerful constraint on the properties of their star formation. 
    more » « less
  5. ABSTRACT We study a suite of extremely high-resolution cosmological Feedback in Realistic Environments simulations of dwarf galaxies ($$M_{\rm halo} \lesssim 10^{10}\rm \, M_{\odot }$$), run to z = 0 with $$30\, \mathrm{M}_{\odot }$$ resolution, sufficient (for the first time) to resolve the internal structure of individual supernovae remnants within the cooling radius. Every halo with $$M_{\rm halo} \gtrsim 10^{8.6}\, \mathrm{M}_{\odot }$$ is populated by a resolved stellar galaxy, suggesting very low-mass dwarfs may be ubiquitous in the field. Our ultra-faint dwarfs (UFDs; $$M_{\ast }\lt 10^{5}\, \mathrm{M}_{\odot }$$) have their star formation (SF) truncated early (z ≳ 2), likely by reionization, while classical dwarfs ($$M_{\ast }\gt 10^{5}\, \mathrm{M}_{\odot }$$) continue forming stars to z < 0.5. The systems have bursty star formation histories, forming most of their stars in periods of elevated SF strongly clustered in both space and time. This allows our dwarf with M*/Mhalo > 10−4 to form a dark matter core $${\gt}200\rm \, pc$$, while lower mass UFDs exhibit cusps down to $${\lesssim}100\rm \, pc$$, as expected from energetic arguments. Our dwarfs with $$M_{\ast }\gt 10^{4}\, \mathrm{M}_{\odot }$$ have half-mass radii (R1/2) in agreement with Local Group (LG) dwarfs (dynamical mass versus R1/2 and stellar rotation also resemble observations). The lowest mass UFDs are below surface brightness limits of current surveys but are potentially visible in next-generation surveys (e.g. LSST). The stellar metallicities are lower than in LG dwarfs; this may reflect pre-enrichment of the LG by the massive hosts or Pop-III stars. Consistency with lower resolution studies implies that our simulations are numerically robust (for a given physical model). 
    more » « less