skip to main content


Title: A stochastically sampled IMF alters the stellar content of simulated dwarf galaxies
ABSTRACT

Cosmological simulations are reaching the resolution necessary to study ultra-faint dwarf galaxies. Observations indicate that in small populations, the stellar initial mass function (IMF) is not fully populated; rather, stars are sampled in a way that can be approximated as coming from an underlying probability density function. To ensure the accuracy of cosmological simulations in the ultra-faint regime, we present an improved treatment of the IMF. We implement a self-consistent, stochastically populated IMF in cosmological hydrodynamic simulations. We test our method using high-resolution simulations of a Milky Way halo, run to z = 6, yielding a sample of nearly 100 galaxies. We also use an isolated dwarf galaxy to investigate the resulting systematic differences in galaxy properties. We find that a stochastic IMF in simulations makes feedback burstier, strengthening feedback, and quenching star formation earlier in small dwarf galaxies. For galaxies in haloes with mass ≲ 108.5 M⊙, a stochastic IMF typically leads to lower stellar mass compared to a continuous IMF, sometimes by more than an order of magnitude. We show that existing methods of ensuring discrete supernovae incorrectly determine the mass of the star particle and its associated feedback. This leads to overcooling of surrounding gas, with at least ∼10 per cent higher star formation and ∼30 per cent higher cold gas content. Going forwards, to accurately model dwarf galaxies and compare to observations, it will be necessary to incorporate a stochastically populated IMF that samples the full spectrum of stellar masses.

 
more » « less
Award ID(s):
1813871
NSF-PAR ID:
10129060
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
492
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 8-21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We study a suite of extremely high-resolution cosmological Feedback in Realistic Environments simulations of dwarf galaxies ($M_{\rm halo} \lesssim 10^{10}\rm \, M_{\odot }$), run to z = 0 with $30\, \mathrm{M}_{\odot }$ resolution, sufficient (for the first time) to resolve the internal structure of individual supernovae remnants within the cooling radius. Every halo with $M_{\rm halo} \gtrsim 10^{8.6}\, \mathrm{M}_{\odot }$ is populated by a resolved stellar galaxy, suggesting very low-mass dwarfs may be ubiquitous in the field. Our ultra-faint dwarfs (UFDs; $M_{\ast }\lt 10^{5}\, \mathrm{M}_{\odot }$) have their star formation (SF) truncated early (z ≳ 2), likely by reionization, while classical dwarfs ($M_{\ast }\gt 10^{5}\, \mathrm{M}_{\odot }$) continue forming stars to z < 0.5. The systems have bursty star formation histories, forming most of their stars in periods of elevated SF strongly clustered in both space and time. This allows our dwarf with M*/Mhalo > 10−4 to form a dark matter core ${\gt}200\rm \, pc$, while lower mass UFDs exhibit cusps down to ${\lesssim}100\rm \, pc$, as expected from energetic arguments. Our dwarfs with $M_{\ast }\gt 10^{4}\, \mathrm{M}_{\odot }$ have half-mass radii (R1/2) in agreement with Local Group (LG) dwarfs (dynamical mass versus R1/2 and stellar rotation also resemble observations). The lowest mass UFDs are below surface brightness limits of current surveys but are potentially visible in next-generation surveys (e.g. LSST). The stellar metallicities are lower than in LG dwarfs; this may reflect pre-enrichment of the LG by the massive hosts or Pop-III stars. Consistency with lower resolution studies implies that our simulations are numerically robust (for a given physical model).

     
    more » « less
  2. ABSTRACT

    Hydrogen emission lines can provide extensive information about star-forming galaxies in both the local and high-redshift Universe. We present a detailed Lyman continuum (LyC), Lyman-α (Lyα), and Balmer line (Hα and Hβ) radiative transfer study of a high-resolution isolated Milky Way simulation using the state-of-the-art Arepo-RT radiation hydrodynamics code with the SMUGGLE galaxy formation model. The realistic framework includes stellar feedback, non-equilibrium thermochemistry accounting for molecular hydrogen, and dust grain evolution in the interstellar medium (ISM). We extend our publicly available Cosmic Lyα Transfer (COLT) code with photoionization equilibrium Monte Carlo radiative transfer and various methodology improvements for self-consistent end-to-end (non-)resonant line predictions. Accurate LyC reprocessing to recombination emission requires modelling pre-absorption by dust ($f_\text{abs} \approx 27.5\,\rm{per\,\,cent}$), helium ionization ($f_\text{He} \approx 8.7\,\rm{per\,\,cent}$), and anisotropic escape fractions ($f_\text{esc} \approx 7.9\,\rm{per\,\,cent}$), as these reduce the available budget for hydrogen line emission ($f_\text{H} \approx 55.9\,\rm{per\,\,cent}$). We investigate the role of the multiphase dusty ISM, disc geometry, gas kinematics, and star formation activity in governing the physics of emission and escape, focusing on the time variability, gas-phase structure, and spatial spectral, and viewing angle dependence of the emergent photons. Isolated disc simulations are well-suited for comprehensive observational comparisons with local Hα surveys, but would require a proper cosmological circumgalactic medium (CGM) environment as well as less dust absorption and rotational broadening to serve as analogs for high-redshift Lyα emitting galaxies. Future applications of our framework to next-generation cosmological simulations of galaxy formation including radiation-hydrodynamics that resolve ≲10 pc multiphase ISM and ≲1 kpc CGM structures will provide crucial insights and predictions for current and upcoming Lyα observations.

     
    more » « less
  3. ABSTRACT We study the spatially resolved (sub-kpc) gas velocity dispersion (σ)–star formation rate (SFR) relation in the FIRE-2 (Feedback in Realistic Environments) cosmological simulations. We specifically focus on Milky Way-mass disc galaxies at late times (z ≈ 0). In agreement with observations, we find a relatively flat relationship, with σ ≈ 15–30 km s−1 in neutral gas across 3 dex in SFRs. We show that higher dense gas fractions (ratios of dense gas to neutral gas) and SFRs are correlated at constant σ. Similarly, lower gas fractions (ratios of gas to stellar mass) are correlated with higher σ at constant SFR. The limits of the σ–ΣSFR relation correspond to the onset of strong outflows. We see evidence of ‘on-off’ cycles of star formation in the simulations, corresponding to feedback injection time-scales of 10–100 Myr, where SFRs oscillate about equilibrium SFR predictions. Finally, SFRs and velocity dispersions in the simulations agree well with feedback-regulated and marginally stable gas disc (Toomre’s Q = 1) model predictions, and the simulation data effectively rule out models assuming that gas turns into stars at (low) constant efficiency (i.e. 1 per cent per free-fall time). And although the simulation data do not entirely exclude gas accretion/gravitationally powered turbulence as a driver of σ, it appears to be subdominant to stellar feedback in the simulated galaxy discs at z ≈ 0. 
    more » « less
  4. ABSTRACT

    Both observations and simulations have shown strong evidence for highly time-variable star formation in low-mass and/or high-redshift galaxies, which has important observational implications because high-redshift galaxy samples are rest-ultraviolet (rest-UV) selected and therefore particularly sensitive to the recent star formation. Using a suite of cosmological ‘zoom-in’ simulations at z > 5 from the Feedback in Realistic Environments project, we examine the implications of bursty star formation histories for observations of high-redshift galaxies with JWST. We characterize how the galaxy observability depends on the star formation history. We also investigate selection effects due to bursty star formation on the physical properties measured, such as the gas fraction, specific star formation rate, and metallicity. We find the observability to be highly time-dependent for galaxies near the survey’s limiting flux due to the star formation rate variability: as the star formation rate fluctuates, the same galaxy oscillates in and out of the observable sample. The observable fraction $f_\mathrm{obs} = 50~{{\ \rm per\ cent}}$ at z ∼ 7 and M⋆ ∼ 108.5–$10^{9}\, {\rm M}_{\odot }$ for a JWST/NIRCam survey reaching a limiting magnitude of $m^\mathrm{lim}_\mathrm{AB} \sim 29{\!-\!}30$, representative of surveys such as JADES and CEERS. JWST-detectable galaxies near the survey limit tend to have properties characteristic of galaxies in the bursty phase: on average, they show approximately 2.5 times higher cold, dense gas fractions and 20 times higher specific star formation rates at a given stellar mass than galaxies below the rest-UV detection threshold. Our study represents a first step in quantifying selection effects and the associated biases due to bursty star formation in studying high-redshift galaxy properties.

     
    more » « less
  5. null (Ed.)
    ABSTRACT Observations of ultraviolet (UV) metal absorption lines have provided insight into the structure and composition of the circumgalactic medium (CGM) around galaxies. We compare these observations with the low-redshift (z ≤ 0.3) CGM around dwarf galaxies in high-resolution cosmological zoom-in runs in the FIRE-2 (Feedback In Realistic Environments) simulation suite. We select simulated galaxies that match the halo mass, stellar mass, and redshift of the observed samples. We produce absorption measurements using trident for UV transitions of C iv, O vi, Mg ii, and Si iii. The FIRE equivalent width (EW) distributions and covering fractions for the C iv ion are broadly consistent with observations inside 0.5Rvir, but are underpredicted for O vi, Mg ii, and Si iii. The absorption strengths of the ions in the CGM are moderately correlated with the masses and star formation activity of the galaxies. The correlation strengths increase with the ionization potential of the ions. The structure and composition of the gas from the simulations exhibit three zones around dwarf galaxies characterized by distinct ion column densities: the discy interstellar medium, the inner CGM (the wind-dominated regime), and the outer CGM (the IGM accretion-dominated regime). We find that the outer CGM in the simulations is nearly but not quite supported by thermal pressure, so it is not in hydrostatic equilibrium, resulting in halo-scale bulk inflow and outflow motions. The net gas inflow rates are comparable to the star formation rate of the galaxy, but the bulk inflow and outflow rates are greater by an order of magnitude, with velocities comparable to the virial velocity of the halo. These roughly virial velocities (${\sim } 100 \, \rm km\, s^{-1}$) produce large EWs in the simulations. This supports a picture for dwarf galaxies in which the dynamics of the CGM at large scales are coupled to the small-scale star formation activity near the centre of their haloes. 
    more » « less