skip to main content

Title: The Lake Ice Continuum Concept: Influence of Winter Conditions on Energy and Ecosystem Dynamics

Millions of lakes worldwide are distributed at latitudes or elevations resulting in the formation of lake ice during winter. Lake ice affects the transfer of energy, heat, light, and material between lakes and their surroundings creating an environment dramatically different from open‐water conditions. While this fundamental restructuring leads to distinct gradients in ions, dissolved gases, and nutrients throughout the water column, surprisingly little is known about the resulting effects on ecosystem processes and food webs, highlighting the lack of a general limnological framework that characterizes the structure and function of lakes under a gradient of ice cover. Drawing from the literature and three novel case studies, we present the Lake Ice Continuum Concept (LICC) as a model for understanding how key aspects of the physical, chemical, and ecological structure and function of lakes vary along a continuum of winter climate conditions mediated by ice and snow cover. We examine key differences in energy, redox, and ecological community structure and describe how they vary in response to shifts in physical mixing dynamics and light availability for lakes with ice and snow cover, lakes with clear ice alone, and lakes lacking winter ice altogether. Global change is driving ice covered lakes toward not only warmer annual average temperatures but also reduced, intermittent or no ice cover. The LICC highlights the wide range of responses of lakes to ongoing climate‐driven changes in ice cover and serves as a reminder of the need to understand the role of winter in the annual aquatic cycle.

more » « less
Award ID(s):
2025982 1856224
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    At broad spatial scales, primary productivity in lakes is known to increase in concert with nutrients, and variables that may disrupt or modify the tight coupling of nutrients and algae are of increasing interest, particularly for those shifting with climate change. Storms may disrupt algae–nutrient relationships, but the expected effects differ between winter and summer seasons, particularly for seasonally ice‐covered lakes. In winter, storms can dramatically change the under‐ice light environment, creating light limitation that disrupts algae–nutrient relationships. Further, storms can bring both snow that blocks light and also wind that blows snow off of ice. In open water conditions, storms may promote turbulence and external nutrient loading. Here, we test the hypotheses that winter and summer storms differentially affect algae–nutrient relationships across 84 seasonally ice‐covered lakes included in the Ecology Under Lake Ice dataset. While nutrients explained most of the variation in chlorophyll across these lakes, we found that secondary drivers differed between seasons. Under‐ice chlorophyll was higher under a variety of precipitation and wind conditions that tend to promote snow‐free clear ice, highlighting the importance of light as a limiting factor for algal growth during winter. In summer, higher water temperatures and storms corresponded with higher chlorophyll. Our study suggests that examining ice‐covered lakes in a gradient from the perennial ice cover of the poles to the intermittent ice cover of lower latitudes would yield key information on the shifts in light and nutrient limitation that control algal biomass.

    more » « less
  2. Abstract

    Warming winters will reduce ice cover and change under‐ice conditions in temperate mountain lakes, where snow contributes most of winter cover on lakes. Snow‐dominated mountain lakes are abundant and highly susceptible to climate warming, yet we lack an understanding of how climate variation and local attributes influence winter processes. We investigated climatic and intrinsic controls on ice phenology, water temperature, and bottom‐water dissolved oxygen (DO) in 15 morphologically diverse lakes in the Sierra Nevada and Klamath Mountains of California, USA, using high‐frequency measurements from multiple (2–5) winters. We found that ice phenology was determined by winter climate variables (snowfall and air temperature) that influence ice‐off timing, whereas ice‐on timing was relatively invariant among years. Lake size and morphology mediated the effect of climate on lake temperature and DO dynamics in early and late winter. Rates of hypolimnetic DO decline were highest in small, shallow lakes, and were unrelated to water temperature. Temperature and oxygen dynamics were more variable in small lakes because heavy snowfall caused ice submergence, mixing, and DO replenishment that affected the entire water column. As the persistence of snow declines in temperate mountain regions, autumn, and spring climatic conditions are expected to gain importance in regulating lake ice phenology. Water temperature and DO will likely increase in most lakes during winter as snowpack declines, but morphological attributes such as lake size will determine the sensitivity of ice phenology and under‐ice processes to climate change.

    more » « less
  3. Abstract

    Winter is an important season for many limnological processes, which can range from biogeochemical transformations to ecological interactions. Interest in the structure and function of lake ecosystems under ice is on the rise. Although limnologists working at polar latitudes have a long history of winter work, the required knowledge to successfully sample under winter conditions is not widely available and relatively few limnologists receive formal training. In particular, the deployment and operation of equipment in below 0°C temperatures pose considerable logistical and methodological challenges, as do the safety risks of sampling during the ice‐covered period. Here, we consolidate information on winter lake sampling and describe effective methods to measure physical, chemical, and biological variables in and under ice. We describe variation in snow and ice conditions and discuss implications for sampling logistics and safety. We outline commonly encountered methodological challenges and make recommendations for best practices to maximize safety and efficiency when sampling through ice or deploying instruments in ice‐covered lakes. Application of such practices over a broad range of ice‐covered lakes will contribute to a better understanding of the factors that regulate lakes during winter and how winter conditions affect the subsequent ice‐free period.

    more » « less
  4. Although it is a historically understudied season, winter is now recognized as a time of biological activity and relevant to the annual cycle of north-temperate lakes. Emerging research points to a future of reduced ice cover duration and changing snow conditions that will impact aquatic ecosystems. The aim of the study was to explore how altered snow and ice conditions, and subsequent changes to under-ice light environment, might impact ecosystem dynamics in a north, temperate bog lake in northern Wisconsin, USA. This dataset resulted from a snow removal experiment that spanned the periods of ice cover on South Sparkling Bog during the winters of 2019, 2020, and 2021. During the winters 2020 and 2021, snow was removed from the surface of South Sparkling Bog using an ARGO ATV with a snow plow attached. The 2019 season served as a reference year, and snow was not removed from the lake. This dataset represents phytoplankton community samples (pooled epilimnion and hypolimnion samples representative of 7 m water column) both under-ice and during some shoulder-season (open water) dates. Samples were collected into amber bottles and preserved with Lugol's solution before they were sent to Phycotech Inc. (St. Joseph MI, USA) for phytoplankton taxonomic identification and quantification. 
    more » « less
  5. Abstract

    Climate change is altering biogeochemical, metabolic, and ecological functions in lakes across the globe. Historically, mountain lakes in temperate regions have been unproductive because of brief ice‐free seasons, a snowmelt‐driven hydrograph, cold temperatures, and steep topography with low vegetation and soil cover. We tested the relative importance of winter and summer weather, watershed characteristics, and water chemistry as drivers of phytoplankton dynamics. Using boosted regression tree models for 28 mountain lakes in Colorado, we examined regional, intraseasonal, and interannual drivers of variability in chlorophyllaas a proxy for lake phytoplankton. Phytoplankton biomass was inversely related to the maximum snow water equivalent (SWE) of the previous winter, as others have found. However, even in years with average SWE, summer precipitation extremes and warming enhanced phytoplankton biomass. Peak seasonal phytoplankton biomass coincided with the warmest water temperatures and lowest nitrogen‐to‐phosphorus ratios. Although links between snowpack, lake temperature, nutrients, and organic‐matter dynamics are increasingly recognized as critical drivers of change in high‐elevation lakes, our results highlight the additional influence of summer conditions on lake productivity in response to ongoing changes in climate. Continued changes in the timing, type, and magnitude of precipitation in combination with other global‐change drivers (e.g., nutrient deposition) will affect production in mountain lakes, potentially shifting these historically oligotrophic lakes toward new ecosystem states. Ultimately, a deeper understanding of these drivers and pattern at multiple scales will allow us to anticipate ecological consequences of global change better.

    more » « less