Warming winters will reduce ice cover and change under‐ice conditions in temperate mountain lakes, where snow contributes most of winter cover on lakes. Snow‐dominated mountain lakes are abundant and highly susceptible to climate warming, yet we lack an understanding of how climate variation and local attributes influence winter processes. We investigated climatic and intrinsic controls on ice phenology, water temperature, and bottom‐water dissolved oxygen (DO) in 15 morphologically diverse lakes in the Sierra Nevada and Klamath Mountains of California, USA, using high‐frequency measurements from multiple (2–5) winters. We found that ice phenology was determined by winter climate variables (snowfall and air temperature) that influence ice‐off timing, whereas ice‐on timing was relatively invariant among years. Lake size and morphology mediated the effect of climate on lake temperature and DO dynamics in early and late winter. Rates of hypolimnetic DO decline were highest in small, shallow lakes, and were unrelated to water temperature. Temperature and oxygen dynamics were more variable in small lakes because heavy snowfall caused ice submergence, mixing, and DO replenishment that affected the entire water column. As the persistence of snow declines in temperate mountain regions, autumn, and spring climatic conditions are expected to gain importance in regulating lake ice phenology. Water temperature and DO will likely increase in most lakes during winter as snowpack declines, but morphological attributes such as lake size will determine the sensitivity of ice phenology and under‐ice processes to climate change.
Ice cover plays a critical role in physical, biogeochemical, and ecological processes in lakes. Despite its importance, winter limnology remains relatively understudied. Here, we provide a primer on the predominant drivers of freshwater lake ice cover and the current methodologies used to study lake ice, including in situ and remote sensing observations, physical based models, and experiments. We highlight opportunities for future research by integrating these four disciplines to address key knowledge gaps in our understanding of lake ice dynamics in changing winters. Advances in technology, data integration, and interdisciplinary collaboration will allow the field to move toward developing global forecasts of lake ice cover for small to large lakes across broad spatial and temporal scales, quantifying ice quality and ice thickness, moving from binary to continuous ice records, and determining how winter ice conditions and quality impact ecosystem processes in lakes over winter. Ultimately, integrating disciplines will improve our ability to understand the impacts of changing winters on lake ice.
more » « less- Award ID(s):
- 1856224
- NSF-PAR ID:
- 10455323
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 125
- Issue:
- 8
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Millions of lakes worldwide are distributed at latitudes or elevations resulting in the formation of lake ice during winter. Lake ice affects the transfer of energy, heat, light, and material between lakes and their surroundings creating an environment dramatically different from open‐water conditions. While this fundamental restructuring leads to distinct gradients in ions, dissolved gases, and nutrients throughout the water column, surprisingly little is known about the resulting effects on ecosystem processes and food webs, highlighting the lack of a general limnological framework that characterizes the structure and function of lakes under a gradient of ice cover. Drawing from the literature and three novel case studies, we present the Lake Ice Continuum Concept (LICC) as a model for understanding how key aspects of the physical, chemical, and ecological structure and function of lakes vary along a continuum of winter climate conditions mediated by ice and snow cover. We examine key differences in energy, redox, and ecological community structure and describe how they vary in response to shifts in physical mixing dynamics and light availability for lakes with ice and snow cover, lakes with clear ice alone, and lakes lacking winter ice altogether. Global change is driving ice covered lakes toward not only warmer annual average temperatures but also reduced, intermittent or no ice cover. The LICC highlights the wide range of responses of lakes to ongoing climate‐driven changes in ice cover and serves as a reminder of the need to understand the role of winter in the annual aquatic cycle.
-
Although it is a historically understudied season, winter is now recognized as a time of biological activity and relevant to the annual cycle of north-temperate lakes. Emerging research points to a future of reduced ice cover duration and changing snow conditions that will impact aquatic ecosystems. The aim of the study was to explore how altered snow and ice conditions, and subsequent changes to under-ice light environment, might impact ecosystem dynamics in a north, temperate bog lake in northern Wisconsin, USA. This dataset resulted from a snow removal experiment that spanned the periods of ice cover on South Sparkling Bog during the winters of 2019, 2020, and 2021. During the winters 2020 and 2021, snow was removed from the surface of South Sparkling Bog using an ARGO ATV with a snow plow attached. The 2019 season served as a reference year, and snow was not removed from the lake. This dataset represents the snow depths, black and white ice thickness, and Secchi depths during the period of ice cover each winter.more » « less
-
Abstract Among its many impacts, climate warming is leading to increasing winter air temperatures, decreasing ice cover extent, and changing winter precipitation patterns over the Laurentian Great Lakes and their watershed. Understanding and predicting the consequences of these changes is impeded by a shortage of winter‐period studies on most aspects of Great Lake limnology. In this review, we summarize what is known about the Great Lakes during their 3–6 months of winter and identify key open questions about the physics, chemistry, and biology of the Laurentian Great Lakes and other large, seasonally frozen lakes. Existing studies show that winter conditions have important effects on physical, biogeochemical, and biological processes, not only during winter but in subsequent seasons as well. Ice cover, the extent of which fluctuates dramatically among years and the five lakes, emerges as a key variable that controls many aspects of the functioning of the Great Lakes ecosystem. Studies on the properties and formation of Great Lakes ice, its effect on vertical and horizontal mixing, light conditions, and biota, along with winter measurements of fundamental state and rate parameters in the lakes and their watersheds are needed to close the winter knowledge gap. Overcoming the formidable logistical challenges of winter research on these large and dynamic ecosystems may require investment in new, specialized research infrastructure. Perhaps more importantly, it will demand broader recognition of the value of such work and collaboration between physicists, geochemists, and biologists working on the world's seasonally freezing lakes and seas.
-
Although it is a historically understudied season, winter is now recognized as a time of biological activity and relevant to the annual cycle of north-temperate lakes. Emerging research points to a future of reduced ice cover duration and changing snow conditions that will impact aquatic ecosystems. The aim of the study was to explore how altered snow and ice conditions, and subsequent changes to under-ice light environment, might impact ecosystem dynamics in a north, temperate bog lake in northern Wisconsin, USA. This dataset resulted from a snow removal experiment that spanned the periods of ice cover on South Sparkling Bog during the winters of 2019, 2020, and 2021. During the winters 2020 and 2021, snow was removed from the surface of South Sparkling Bog using an ARGO ATV with a snow plow attached. The 2019 season served as a reference year, and snow was not removed from the lake. This dataset represents chlorophyll, light, and high frequency buoy data collected from this project. Related datasets are: https://doi.org/10.6073/pasta/962fa57959ff9828eb6f1cbda79b82c0 https://doi.org/10.6073/pasta/f6e271634a04819e25bc7c913cd67155 https://doi.org/10.6073/pasta/9a26e819522152e878d802df76cf90d7more » « less