skip to main content


Title: Interstellar interferometry: precise curvature measurement from pulsar secondary spectra
ABSTRACT

The parabolic structure of the secondary or conjugate spectra of pulsars is often the result of isolated one-dimensional (or at least highly anisotropic) lenses in the interstellar medium (ISM). The curvature of these features contains information about the velocities of the Earth, ISM, and pulsar along the primary axis of the lens. As a result, measuring variations in the curvature over the course of a year, or the orbital period for pulsars in binaries, can constrain properties of the screen and pulsar. In particular, the pulsar distance and orbital inclination for binary systems can be found for multiple screens or systems with prior information on sin(i). By mapping the conjugate spectra into a space where the main arc and inverted arclets are straight lines, we are able to make use of the full information content from the inverted arclet curvatures, amplitudes, and phases using eigenvectors to uniquely and optimally retrieve phase information. This allows for a higher precision measurement than the standard Hough transform for systems where these features are available. Our technique also directly yields the best-fitting one-dimensional impulse response function for the interstellar lens given in terms of the Doppler shift, time delay, and magnification of images on the sky as seen from a single observatory. This can be extended for use in holographic imaging of the lens by combining multiple telescopes. We present examples of this new method for both simulated data and actual observations of PSR B0834+06.

 
more » « less
NSF-PAR ID:
10361695
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
510
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4573-4581
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Observations of pulsar scintillation are among the few astrophysical probes of very small-scale (≲ au) phenomena in the interstellar medium (ISM). In particular, characterization of scintillation arcs, including their curvature and intensity distributions, can be related to interstellar turbulence and potentially overpressurized plasma in local ISM inhomogeneities, such as supernova remnants, H ii regions, and bow shocks. Here we present a survey of eight pulsars conducted at the Five-hundred-metre Aperture Spherical Telescope (FAST), revealing a diverse range of scintillation arc characteristics at high sensitivity. These observations reveal more arcs than measured previously for our sample. At least nine arcs are observed toward B1929+10 at screen distances spanning $\sim 90~{{\ \rm per\ cent}}$ of the pulsar’s 361 pc path length to the observer. Four arcs are observed toward B0355+54, with one arc yielding a screen distance as close as ∼105 au (<1 pc) from either the pulsar or the observer. Several pulsars show highly truncated, low-curvature arcs that may be attributable to scattering near the pulsar. The scattering screen constraints are synthesized with continuum maps of the local ISM and other well-characterized pulsar scintillation arcs, yielding a three-dimensional view of the scattering media in context.

     
    more » « less
  2. Abstract

    We use the upgraded Giant Metrewave Radio Telescope (uGMRT) to measure scintillation arc properties in six bright canonical pulsars with simultaneous dual-frequency coverage. These observations, at frequencies from 300 to 750 MHz, allowed for detailed analysis of arc evolution across frequency and epoch. We perform more robust determinations of frequency dependence for arc curvature, scintillation bandwidth, and scintillation timescale, and comparison between arc curvature and pseudo-curvature than allowed by single-frequency-band-per-epoch measurements, which we find to agree with theory and previous literature. We find a strong correlation between arc asymmetry and arc curvature, which we have replicated using simulations, and attribute to a bias in the Hough transform approach to scintillation arc analysis. Possible evidence for an approximately week-long timescale over which a given scattering screen dominates signal propagation was found by tracking visible scintillation arcs in each epoch in PSR J1136+1551. The inclusion of a 155-minute observation allowed us to resolve the scale of scintillation variations on short timescales, which we find to be directly tied to the amount of interstellar medium sampled over the observation. Some of our pulsars showed either consistent or emerging asymmetries in arc curvature, indicating instances of refraction across their lines of sight. Significant features in various pulsars, such as multiple scintillation arcs in PSR J1136+1551 and flat arclets in PSR J1509+5531, that have been found in previous works, were also detected. The simultaneous multiple-band observing capability of the upgraded GMRT shows excellent promise for future pulsar scintillation work.

     
    more » « less
  3. Abstract

    The interstellar medium hosts a population of scattering screens, most of unknown origin. Scintillation studies of pulsars provide a sensitive tool for resolving these scattering screens and a means of measuring their properties. In this paper, we report our analysis of 34 yr of Arecibo observations of PSR B1133 + 16, from which we have obtained high-quality dynamic spectra and their associated scintillation arcs, arising from the scattering screens located along the line of sight to the pulsar. We have identified six individual scattering screens that are responsible for the observed scintillation arcs, which persist for decades. Using the assumption that the scattering screens have not changed significantly in this time, we have modeled the variations in arc curvature throughout the Earth’s orbit and extracted information about the placement, orientation, and velocity of five of the six screens, with the highest-precision distance measurement placing a screen at just5.460.59+0.54pc from the Earth. We associate the more distant of these screens with an underdense region of the Local Bubble.

     
    more » « less
  4. ABSTRACT

    Large widefield surveys make possible the serendipitous discovery of rare subclasses of pulsars. One such class are ‘spider’-type pulsar binaries, comprised of a pulsar in a compact orbit with a low-mass (sub)stellar companion. In a search for circularly polarized radio sources in Australian Square Kilometre Array Pathfinder (ASKAP) Pilot Survey observations, we discovered highly variable and circularly polarized emission from a radio source within the error region of the γ-ray source 4FGL J1646.5−4406. The variability is consistent with the eclipse of a compact, steep-spectrum source behind ablated material from a companion in an ∼5.3 h binary orbit. Based on the eclipse properties and spatial coincidence with 4FGL J1646.5−4406, we argue that the source is likely a recycled pulsar in a ‘redback’ binary system. Using properties of the eclipses from ASKAP and Murchison Widefield Array observations, we provide broad constraints on the properties of the eclipse medium. We identified a potential optical/infrared counterpart in archival data consistent with a variable low-mass star. Using the Parkes radio telescope ‘Murriyang’ and the Meer Karoo Array Telescope (MeerKAT) , we searched extensively for radio pulsations but yielded no viable detections of pulsed emission. We suggest that the non-detection of pulses is due to scattering in the intra-binary material, but scattering from the interstellar medium can also plausibly explain the pulse non-detections if the interstellar dispersion measure exceeds ∼600 pc cm−3. Orbital constraints derived from optical observations of the counterpart would be highly valuable for future γ-ray pulsation searches, which may confirm the source nature as a pulsar.

     
    more » « less
  5. Abstract

    Context.By providing information about the location of scattering material along the line of sight (LoS) to pulsars, scintillation arcs are a powerful tool for exploring the distribution of ionized material in the interstellar medium (ISM). Here, we present observations that probe the ionized ISM on scales of ∼0.001–30 au.Aims.We have surveyed pulsars for scintillation arcs in a relatively unbiased sample with DM < 100 pc cm−3. We present multifrequency observations of 22 low to moderate DM pulsars. Many of the 54 observations were also observed at another frequency within a few days.Methods.For all observations, we present dynamic spectra, autocorrelation functions, and secondary spectra. We analyze these data products to obtain scintillation bandwidths, pulse broadening times, and arc curvatures.Results.We detect definite or probable scintillation arcs in 19 of the 22 pulsars and 34 of the 54 observations, showing that scintillation arcs are a prevalent phenomenon. The arcs are better defined in low DM pulsars. We show that well-defined arcs do not directly imply anisotropy of scattering. Only the presence of reverse arclets and a deep valley along the delay axis, which occurs in about 20% of the pulsars in the sample, indicates substantial anisotropy of scattering.Conclusions.The survey demonstrates substantial patchiness of the ionized ISM on both astronomical-unit-size scales transverse to the LoS and on ∼100 pc scales along it. We see little evidence for distributed scattering along most lines of sight in the survey.

     
    more » « less