skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Pulsar scintillation through thick and thin: bow shocks, bubbles, and the broader interstellar medium

Observations of pulsar scintillation are among the few astrophysical probes of very small-scale (≲ au) phenomena in the interstellar medium (ISM). In particular, characterization of scintillation arcs, including their curvature and intensity distributions, can be related to interstellar turbulence and potentially overpressurized plasma in local ISM inhomogeneities, such as supernova remnants, H ii regions, and bow shocks. Here we present a survey of eight pulsars conducted at the Five-hundred-metre Aperture Spherical Telescope (FAST), revealing a diverse range of scintillation arc characteristics at high sensitivity. These observations reveal more arcs than measured previously for our sample. At least nine arcs are observed toward B1929+10 at screen distances spanning $\sim 90~{{\ \rm per\ cent}}$ of the pulsar’s 361 pc path length to the observer. Four arcs are observed toward B0355+54, with one arc yielding a screen distance as close as ∼105 au (<1 pc) from either the pulsar or the observer. Several pulsars show highly truncated, low-curvature arcs that may be attributable to scattering near the pulsar. The scattering screen constraints are synthesized with continuum maps of the local ISM and other well-characterized pulsar scintillation arcs, yielding a three-dimensional view of the scattering media in context.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Medium: X Size: p. 7568-7587
["p. 7568-7587"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The interstellar medium hosts a population of scattering screens, most of unknown origin. Scintillation studies of pulsars provide a sensitive tool for resolving these scattering screens and a means of measuring their properties. In this paper, we report our analysis of 34 yr of Arecibo observations of PSR B1133 + 16, from which we have obtained high-quality dynamic spectra and their associated scintillation arcs, arising from the scattering screens located along the line of sight to the pulsar. We have identified six individual scattering screens that are responsible for the observed scintillation arcs, which persist for decades. Using the assumption that the scattering screens have not changed significantly in this time, we have modeled the variations in arc curvature throughout the Earth’s orbit and extracted information about the placement, orientation, and velocity of five of the six screens, with the highest-precision distance measurement placing a screen at just5.460.59+0.54pc from the Earth. We associate the more distant of these screens with an underdense region of the Local Bubble.

    more » « less
  2. Abstract

    Context.By providing information about the location of scattering material along the line of sight (LoS) to pulsars, scintillation arcs are a powerful tool for exploring the distribution of ionized material in the interstellar medium (ISM). Here, we present observations that probe the ionized ISM on scales of ∼0.001–30 au.Aims.We have surveyed pulsars for scintillation arcs in a relatively unbiased sample with DM < 100 pc cm−3. We present multifrequency observations of 22 low to moderate DM pulsars. Many of the 54 observations were also observed at another frequency within a few days.Methods.For all observations, we present dynamic spectra, autocorrelation functions, and secondary spectra. We analyze these data products to obtain scintillation bandwidths, pulse broadening times, and arc curvatures.Results.We detect definite or probable scintillation arcs in 19 of the 22 pulsars and 34 of the 54 observations, showing that scintillation arcs are a prevalent phenomenon. The arcs are better defined in low DM pulsars. We show that well-defined arcs do not directly imply anisotropy of scattering. Only the presence of reverse arclets and a deep valley along the delay axis, which occurs in about 20% of the pulsars in the sample, indicates substantial anisotropy of scattering.Conclusions.The survey demonstrates substantial patchiness of the ionized ISM on both astronomical-unit-size scales transverse to the LoS and on ∼100 pc scales along it. We see little evidence for distributed scattering along most lines of sight in the survey.

    more » « less
  3. Abstract

    We use the upgraded Giant Metrewave Radio Telescope (uGMRT) to measure scintillation arc properties in six bright canonical pulsars with simultaneous dual-frequency coverage. These observations, at frequencies from 300 to 750 MHz, allowed for detailed analysis of arc evolution across frequency and epoch. We perform more robust determinations of frequency dependence for arc curvature, scintillation bandwidth, and scintillation timescale, and comparison between arc curvature and pseudo-curvature than allowed by single-frequency-band-per-epoch measurements, which we find to agree with theory and previous literature. We find a strong correlation between arc asymmetry and arc curvature, which we have replicated using simulations, and attribute to a bias in the Hough transform approach to scintillation arc analysis. Possible evidence for an approximately week-long timescale over which a given scattering screen dominates signal propagation was found by tracking visible scintillation arcs in each epoch in PSR J1136+1551. The inclusion of a 155-minute observation allowed us to resolve the scale of scintillation variations on short timescales, which we find to be directly tied to the amount of interstellar medium sampled over the observation. Some of our pulsars showed either consistent or emerging asymmetries in arc curvature, indicating instances of refraction across their lines of sight. Significant features in various pulsars, such as multiple scintillation arcs in PSR J1136+1551 and flat arclets in PSR J1509+5531, that have been found in previous works, were also detected. The simultaneous multiple-band observing capability of the upgraded GMRT shows excellent promise for future pulsar scintillation work.

    more » « less
  4. Abstract High-sensitivity interstellar scintillation and polarization observations of PSR B0656+14 made at three epochs over a year using the Five-hundred-meter Aperture Spherical radio Telescope (FAST) show that the scattering is dominated by two different compact regions. We identify the one nearer to the pulsar with the shell of the Monogem Ring, thereby confirming the association. The other is probably associated with the Local Bubble. We find that the observed position angles of the pulsar spin axis and the spatial velocity are significantly different, with a separation of 19.°3 ± 0.°8, inconsistent with a previously published near-perfect alignment of 1° ± 2°. The two independent scattering regions are clearly defined in the secondary spectra, which show two strong forward parabolic arcs. The arc curvatures imply that the scattering screens corresponding to the outer and inner arcs are located approximately 28 pc from PSR B0656+14 and 185 pc from the Earth, respectively. Comparison of the observed Doppler profiles with electromagnetic simulations shows that both scattering regions are mildly anisotropic. For the outer arc, we estimate the anisotropy A R to be approximately 1.3, with the scattering irregularities aligned parallel to the pulsar velocity. For the outer arc, we compare the observed delay profiles with delay profiles computed from a theoretical strong-scattering model. Our results suggest that the spatial spectrum of the scattering irregularities in the Monogem Ring is flatter than Kolmogorov, but further observations are required to confirm this. 
    more » « less

    The parabolic structure of the secondary or conjugate spectra of pulsars is often the result of isolated one-dimensional (or at least highly anisotropic) lenses in the interstellar medium (ISM). The curvature of these features contains information about the velocities of the Earth, ISM, and pulsar along the primary axis of the lens. As a result, measuring variations in the curvature over the course of a year, or the orbital period for pulsars in binaries, can constrain properties of the screen and pulsar. In particular, the pulsar distance and orbital inclination for binary systems can be found for multiple screens or systems with prior information on sin(i). By mapping the conjugate spectra into a space where the main arc and inverted arclets are straight lines, we are able to make use of the full information content from the inverted arclet curvatures, amplitudes, and phases using eigenvectors to uniquely and optimally retrieve phase information. This allows for a higher precision measurement than the standard Hough transform for systems where these features are available. Our technique also directly yields the best-fitting one-dimensional impulse response function for the interstellar lens given in terms of the Doppler shift, time delay, and magnification of images on the sky as seen from a single observatory. This can be extended for use in holographic imaging of the lens by combining multiple telescopes. We present examples of this new method for both simulated data and actual observations of PSR B0834+06.

    more » « less