Abstract The growth of supermassive black holes is strongly linked to their galaxies. It has been shown that the population mean black hole accretion rate ( ) primarily correlates with the galaxy stellar mass (M⋆) and redshift for the general galaxy population. This work aims to provide the best measurements of as a function ofM⋆and redshift over ranges of 109.5<M⋆< 1012M⊙andz< 4. We compile an unprecedentedly large sample with 8000 active galactic nuclei (AGNs) and 1.3 million normal galaxies from nine high-quality survey fields following a wedding cake design. We further develop a semiparametric Bayesian method that can reasonably estimate and the corresponding uncertainties, even for sparsely populated regions in the parameter space. is constrained by X-ray surveys sampling the AGN accretion power and UV-to-infrared multiwavelength surveys sampling the galaxy population. Our results can independently predict the X-ray luminosity function (XLF) from the galaxy stellar mass function (SMF), and the prediction is consistent with the observed XLF. We also try adding external constraints from the observed SMF and XLF. We further measure for star-forming and quiescent galaxies and show that star-forming is generally larger than or at least comparable to the quiescent .
more »
« less
Improved effective dynamics of loop-quantum-gravity black hole and Nariai limit
Abstract We propose a new model of the spherical symmetric quantum black hole in the reduced phase space formulation. We deparametrize gravity by coupling to the Gaussian dust which provides the material coordinates. The foliation by dust coordinates covers both the interior and exterior of the black hole. After the spherical symmetry reduction, our model is a 1 + 1 dimensional field theory containing infinitely many degrees of freedom. The effective dynamics of the quantum black hole is generated by an improved physical HamiltonianHΔ. The holonomy correction inHΔis implemented by the -scheme regularization with a Planckian area scale Δ (which often chosen as the minimal area gap in loop quantum gravity). The effective dynamics recovers the semiclassical Schwarzschild geometry at low curvature regime and resolves the black hole singularity with Planckian curvature, e.g.RμνρσRμνρσ∼ 1/Δ2. Our model predicts that the evolution of the black hole at late time reaches the charged Nariai geometry dS2×S2with Planckian radii . The Nariai geometry is stable under linear perturbations but may be unstable by nonperturbative quantum effects. Our model suggests the existence of quantum tunneling of the Nariai geometry and a scenario of black-hole-to-white-hole transition.
more »
« less
- Award ID(s):
- 1912278
- PAR ID:
- 10361710
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- Volume:
- 39
- Issue:
- 3
- ISSN:
- 0264-9381
- Page Range / eLocation ID:
- Article No. 035011
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In the theory of protoplanetary disk turbulence, a widely adopted ansatz, or assumption, is that the turnover frequency of the largest turbulent eddy, ΩL, is the local Keplerian frequency ΩK. In terms of the standard dimensionless Shakura–Sunyaevαparameter that quantifies turbulent viscosity or diffusivity, this assumption leads to characteristic length and velocity scales given respectively by and , in whichHandcare the local gas scale height and sound speed. However, this assumption is not applicable in cases when turbulence is forced numerically or driven by some natural processes such as vertical shear instability. Here, we explore the more general case where ΩL≥ ΩKand show that, under these conditions, the characteristic length and velocity scales are respectively and , where is twice the Rossby number. It follows that , where is the root-mean-square average of the turbulent velocities. Properly allowing for this effect naturally explains the reduced particle scale heights produced in shearing box simulations of particles in forced turbulence, and it may help with interpreting recent edge-on disk observations; more general implications for observations are also presented. For , the effective particle Stokes numbers are increased, which has implications for particle collision dynamics and growth, as well as for planetesimal formation.more » « less
-
Abstract State transitions in black hole X-ray binaries are likely caused by gas evaporation from a thin accretion disk into a hot corona. We present a height-integrated version of this process, which is suitable for analytical and numerical studies. With radiusrscaled to Schwarzschild units and coronal mass accretion rate to Eddington units, the results of the model are independent of black hole mass. State transitions should thus be similar in X-ray binaries and an active galactic nucleus. The corona solution consists of two power-law segments separated at a break radiusrb∼ 103(α/0.3)−2, whereαis the viscosity parameter. Gas evaporates from the disk to the corona forr>rb, and condenses back forr<rb. Atrb, reaches its maximum, . If atr≫rbthe thin disk accretes with , then the disk evaporates fully before reachingrb, giving the hard state. Otherwise, the disk survives at all radii, giving the thermal state. While the basic model considers only bremsstrahlung cooling and viscous heating, we also discuss a more realistic model that includes Compton cooling and direct coronal heating by energy transport from the disk. Solutions are again independent of black hole mass, andrbremains unchanged. This model predicts strong coronal winds forr>rb, and aT∼ 5 × 108K Compton-cooled corona forr<rb. Two-temperature effects are ignored, but may be important at small radii.more » « less
-
Abstract We generalize a magnetogram-matching Biot–Savart law (BSl) from planar to spherical geometry. For a given coronal current densityJ, this law determines the magnetic field whose radial component vanishes at the surface. The superposition of with a potential field defined by a given surface radial field,Br, provides the entire configuration whereBrremains unchanged by the currents. Using this approach, we (1) upgrade our regularized BSls for constructing coronal magnetic flux ropes (MFRs) and (2) propose a new method for decomposing a measured photospheric magnetic field as , where the potential,Bpot, toroidal,BT, and poloidal, , fields are determined byBr,Jr, and the surface divergence ofB–Bpot, respectively, all derived from magnetic data. OurBTis identical to the one in the alternative Gaussian decomposition by P. W. Schuck et al., whileBpotand are different from their poloidal fields and , which arepotentialin the infinitesimal proximity to the upper and lower side of the surface, respectively. In contrast, our has no such constraints and, asBpotandBT, refers to thesameupper side of the surface. In spite of these differences, for a continuousJdistribution across the surface,Bpotand are linear combinations of and . We demonstrate that, similar to the Gaussian method, our decomposition allows one to identify the footprints and projected surface-location of MFRs in the solar corona, as well as the direction and connectivity of their currents.more » « less
-
Abstract We present a theory based on the conventional two-term (i.e. Lorentzian) approximation to the exact solution of the Boltzmann equation in non-magnetized weakly ionized plasma to efficiently obtain the electron rate and transport coefficients in a magnetized plasma for an arbitrary magnitude and direction of applied electric field and magnetic field . The proposed transcendental method does not require the two-term solution of the Boltzmann equation in magnetized plasma, based on which the transport parameters vary as a function of the reduced electric field , reduced electron cyclotron frequency , and angle between and vectors, whereNis the density of neutrals. Comparisons between the coefficients derived from BOLSIG+’s solution (obtained via the two-term expansion when ) and coefficients of the presented method are illustrated for air, a mixture of molecular hydrogen (H2) and helium (He) representing the giant gas planets of the Solar System, and pure carbon dioxide (CO2). The new approach may be used in the modeling of magnetized plasma encountered in the context of transient luminous events, e.g. sprite streamers in the atmosphere of Earth and Jupiter, in modeling the propagation of lightning’s electromagnetic pulses in Earth’s ionosphere, and in various laboratory and industrial applications of nonthermal plasmas.more » « less
An official website of the United States government
